Particle Detection with Superconducting Tunnel Junctions—Modelling the Non-Equilibrium State Generated by Particle Interactions

  • D. J. Goldie
  • N. E. Booth
  • R. J. Gaitskell
  • G. Salmon
Part of the Springer Proceedings in Physics book series (SPPHY, volume 64)

Abstract

Superconducting tunnel junctions (STJ’s) have attracted much interest as high resolution detectors for nuclear particles. Detection schemes have been implemented where the STJ provides the read-out for particle interactions in the superconducting films which comprise the junction. Alternatively the STJ may provide read-out for particle absorption in a dielectric or superconducting absorber crystal. We give here an overview of current work directed towards understanding the details of the phonon and quasiparticle yields in superconductors, and thus establishing a theoretical basis for the ultimate energy resolution and how it varies from one material to another.

Keywords

Enthalpy Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1a]
    Low Temperature Detectors for Neutrinos and Dark Matter II\ eds. L.Gonzalez- Mestres and D.Perret-Gallix, (Editions Frontieres,1988).Google Scholar
  2. [1b]
    Superconductive Particle Detectors, ed. A.Barone, (World Scientific, 1988 ).Google Scholar
  3. [1c]
    Low Temperature Detectors for Neutrinos and Dark Matter III, eds. L.Brogiato, D.V.Camin and E.Fiorini, (Editions Frontieres, 1990).Google Scholar
  4. [1d]
    Proceedings of the Workshop on Tunnel Junction Detectors for X-rays, eds. A.Barone, R.Cristiano and S.Pagano, (World Scientific, 1991).Google Scholar
  5. [2]
    D.J.Goldie, N.E.Booth, C.Patel and G.L.Salmon, Phys. Rev. Lett. 64, 954 (1990).ADSCrossRefGoogle Scholar
  6. [3]
    D.J.Goldie in Ref. [1d].Google Scholar
  7. [4]
    N.E.Booth, R.J.Gaitskell, D.J.Goldie, C.Patel and G.L.Salmon in Ref [1d].Google Scholar
  8. [5]
    W.Rothmund and A.Zehnder in Ref. [1b].Google Scholar
  9. [6]
    H.Kraus, F.V.Feilitzsch, J.Jochum, R.L.Mossbauer Th.Peterreins and F.Probst, Phys. Lett. B. 231, 195 (1989).ADSCrossRefGoogle Scholar
  10. [7]
    H.Kraus, Th.Peterreins, F.Probst F.V.Feilitzsch, R.L Mossbauer and V.Zacek, Euro. Phys. Lett. 1, 161 (1986).ADSCrossRefGoogle Scholar
  11. [8]
    P.Gare, R.Engelhardt, A.Peacock, D.Twerenbold, J.Lumley and R.E.Somekh, IEEE Trans. Mag. MAG-25 1351 (1989).Google Scholar
  12. [9]
    A.Rothwarf and B.N.Taylor, Phys. Rev. Lett. 19 27 (1967).ADSCrossRefGoogle Scholar
  13. [10]
    W.Rothmund and A.Zehnder in Ref. [1a].Google Scholar
  14. [11]
    S.B.Kaplan, C.C.Chi, D.N.Langenberg, J.J.Chang, S.Jafarey and D.J.Scalapino, Phys. Rev. B 14, 4854 (1976).ADSCrossRefGoogle Scholar
  15. [12]
    K.E.Gray in Ref. [1b].Google Scholar
  16. [13]
    D.Van Vechten and K.S.Wood, submitted to Phys. Rev. B (1990).Google Scholar
  17. [14]
    L.Katz and A.S.Penfold, Rev. Mod. Phys. 24 28 (1952).ADSCrossRefGoogle Scholar
  18. [15]
    R.W.Schoenlein, W.Z.Lin, J.G.Fujimoto and G.L.Eesley, Phys. Rev. Lett. 58, 1680 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. J. Goldie
    • 1
    • 2
  • N. E. Booth
    • 1
    • 2
  • R. J. Gaitskell
    • 1
    • 2
  • G. Salmon
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of OxfordOxfordUK
  2. 2.Nuclear Physics LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations