YBCO/PBCO/YBCO Edge Junctions and DC-SQUIDs

  • H. Rogalla
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 64)


One of the first demonstrated low power applications of high-Tc superconductivity was the DC-SQUID making use of natural grain boundaries as Josephson junctions1/3. That was (and still is) a difficulty in high current applications turned out to be a benefit in the early stages of the research in high-Tc superconducting electronics: grain boundaries in polycrystalline thin films of YBa2Cu307−x (in short YBC0) work as Josephson junctions with superconductor/normal metal/superconductor (SNS) like behavior4. Based on these early investigations two main directions are currently followed in the Josephson junction and SQUID research, (i) the preparation of artificial grain boundaries on bicrystals5 and on edges in the substrate6, and (ii) the development of SNS-like junctions with thin film sandwiches of YBCO/normal metal7 or semiconductor/YBCO8/10. Up to now the best performance at 77 K has been demonstrated for a DC-SQUID with artificial grain boundary junctions on SrTiO3 bicrystals11. It offers relative low noise and a periodic voltage modulation by an external magnetic field at temperatures up to 87 K. However, bicrystal fabrication, control of the critical current and the normal resistance, and reproducibility pose a serious problem.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Critical Current Density Josephson Junction Rutherford Backscatter Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.Th.A.M. de Waele, R.T.M. Smokers, R.W. van der Heiden, K. Kadowaki, Y.K. Huang, M van Sprang and A.A. Menovsky, Phys.Rev.B 35, 8858 (1987).Google Scholar
  2. 2.
    R.H. Koch, C.P. Umbach, G.J. Clark, P. Chaudhari and R.B. Laibowitz, Appl. Phys. Lett. 51, 617 (1987).CrossRefGoogle Scholar
  3. 3.
    B. Häuser, M. Diegel and H. Rogalla, Appl.Phys.Lett. 52, 846 (1988).CrossRefGoogle Scholar
  4. 4.
    B. Häuser, B.B.G. Klopman, G.J. Gerritsma, J. Gao and H. Rogalla, Appl. Phys. Lett. 54, 1368 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    D. Dimos, P. Chaudhari, J. Mannhart and F.K. Legoues, Phys. Rev. Lett. 61, 219 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    G.J. Cui, K. Herrmann, Y. Zhang, C.L. Jia, Ch. Buchal, J. Schubert, W. Zander, A.I. Braginski and Ch. Heiden, in Nonlinear Superconductive and Electronics and Joseph Devices Plenu Press (1991).Google Scholar
  7. 7.
    M.S. Dilorio, S. Yoshizumi, K. Yang, J. Zang, M. Maing. Appl. Phys. Lett. 58, 2552 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    D.K. Chin, T. Van Duzer. Appl. Phys. Lett. 58, 753 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    J. Gao, W.A.M. Aarnink, G.J. Gerritsma, H. Rogalla. Physica C 171, 126 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    R.B. Laibowitz, R.H. Koch, A. Gupta, G. Koren, W.J. Gallagher, V. Foglietti, B. Oh and J.M. Viggiano, Appl. Phys. Lett. 56, 686 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    R. Gross, P. Chaudhari, M. Kawasaki, M.B. Ketchen and A. Gupta. Appl. Phys. Lett 57, 727 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    J.B. Barner, C.T. Rogers, A. Inam, R. Ramesh, and S. Bersey, Appl. Phys. Lett. 59, 742 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    C.L. Jia, B. Kabius, K. Urban, K. Herrman, G.J. Cui, J.S. Schubert, W. Zander, A.I. Braginski and Ch. Heiden. Physica C 171, 545 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    J. Gao, B. Häuser, and H. Rogalla, J. Appl. Phys. 67, 2512 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    J. Gao, W.A.M. Aarnink, G.J. Gerritsma, A.J.H.M. Rijnders, H. Rogalla, F. Hakkens, W. Coene and M.A.M. Gijs, Physica C 177, 384 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    M.Yu. Kupriyanov and K.K. Likharev, IEEE Trans. Magn. 27, 2460 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    J. Gao, W.A.M. Aarnink, G.J. Gerritsma and H. Rogalla, Appl. Surface Science 46, 74 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    J. Gao, Yu. Boguslavkij, B.B.G. Klopman, D. Terpstra, G.J. Gerritsma and H. Rogalla, To be published in Appl. Phys. Lett. 59 (1991).Google Scholar
  19. 19.
    K.K. Likharev, Rev. Mod. Phys.. 51, 116 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    A. Barone and C. Paterno, Physics and Application of the Josephson Effect, John Wiley Cons., New York, 1982.CrossRefGoogle Scholar
  21. 21.
    S.L. Miller, K.R. Biagi, J.R. Clem and D.K. Finnemore, Phys. Rev. B 31, 2684 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    F.C. Wellstood, J.J. Kingston, M. Ferrari and J. Clarke. IEEE Trans. Magn. 27, 2569 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    W. Eidelloth, W.J. Gallagher, R.P. Robertazzi, R.H. Koch, B. Oh, R.L. Sandstrom. To be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H. Rogalla
    • 1
  1. 1.Faculty of Applied Physics, Low Temperature GroupUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations