Skip to main content

Steroids, Retinoids, and their Mode of Action

  • Conference paper
  • 25 Accesses

Part of the book series: ESO Monographs ((ESO MONOGRAPHS))

Abstract

The molecular understanding of biological systems which regulate patterns of gene expression both during the development of eucaryotic organisms and in terminally differentiated cells is a prerequisite for the design of strategies interfering with pathological situations that originate from deregulated gene expression. Our laboratory has been particularly interested in the transcriptional regulation by small signalling molecules of gene networks triggering development and homeostasis. In one of these signal transduction pathways the key molecule is a nuclear receptor for the signal and acts as an inducible transcription factor (Fig. 1). Initially, nuclear receptors comprised only some steroid hormone receptors, but we now recognise them as a superfamily of receptors for a variety of ligands, including steroids, thyroids and retinoids (Fig. 2). Moreover, due to their sequence similarity with known members of the family, a variety of “orphan” nuclear receptors have been cloned for which no [5–9], or only artificial ligands, such as peroxisome proliferators [10], are known. All of these receptors are characterised by a common structural organisation, first recognised in a comparison of the oestrogen receptors of various species [11]. The amino-acid sequence of a nuclear receptor is now generally divided into 7 segments, denoted A through F (Figs. 2 and 3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yamamoto KR: Steroid receptor regulated transcription of specific genes and gene networks. Ann Rev Genet (19)85, 19:209–215

    Article  PubMed  CAS  Google Scholar 

  2. Evans RM: The steroid and thyroid hormone receptor superfamily. Science 1988, (240):889–895

    Article  PubMed  CAS  Google Scholar 

  3. Green S and Chambon P: Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 1988, (4):309–314

    Article  PubMed  CAS  Google Scholar 

  4. Beato M: Gene regulation by steroid hormones. Cell 1989, (56):335–344

    Article  PubMed  CAS  Google Scholar 

  5. Giguere V, Yang N, Segui P and Evans RM: Identification of a new class of steroid hormone receptors. Nature 1988, (331):91–94

    Article  PubMed  CAS  Google Scholar 

  6. Hazel TG, Nathans D and Lau LF: A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci USA 1988, (85):8444–8448

    Article  PubMed  CAS  Google Scholar 

  7. Segraves WA and Hogness DS: The E75 ecdysone inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev 1990, (4):204–219

    Article  PubMed  CAS  Google Scholar 

  8. Pignoni F, Baldarelli RM, Steingrimsson E, Diaz RJ, Patapoutian A, Merriam JR and Lengyel JA: The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 1990, (62):151–163

    Article  PubMed  CAS  Google Scholar 

  9. Wang LH, Tsai SY, Cook RG, Beattie WG, Tsai MJ and O’Malley BW: COUP transcription factor is a member of the steroid receptor superfamily. Nature 1989, (340):163–166

    Article  PubMed  CAS  Google Scholar 

  10. Issemann I and Green S: Activation of a member of the steroid hormone receptor superfamily by peroxisome pro I iterators. Nature 1990, (347):645–650

    Article  PubMed  CAS  Google Scholar 

  11. Krust A, Green S, Argos P, Kumar V, Walter P, Bornert JM and Chambon P: The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBOJ 1986, (5):891–897

    PubMed  CAS  Google Scholar 

  12. Welshons WV, Liebermann ME and Gorski J: Nuclear localization of unoccupied oestrogen receptors. Nature 1984, (307):747–749

    Article  PubMed  CAS  Google Scholar 

  13. King RJ and Greene GL: Monoclonal antibodies localize oestrogen receptor in the nucleus of target cells. Nature 1984, (307):745–747

    Article  PubMed  CAS  Google Scholar 

  14. Picard D and Yamamoto KR: Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 1987, (6):3333–3340

    PubMed  CAS  Google Scholar 

  15. Picard D, Kumar V, Chambon P and Yamamoto KR: Signal transduction by steroid hormones: nuclear localization is differentially regulated in estrogen and glucocorticoid receptors. Cell Regulation (1)990, 1:291–299

    PubMed  CAS  Google Scholar 

  16. Ylikomi T et al, in preparation

    Google Scholar 

  17. Kumar V and Chambon.: The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 1988, (55):145–156

    Article  PubMed  CAS  Google Scholar 

  18. Tsai SY, Carlstedt-Duke J, Weigel NL, Dahiman K, Gustafsson JA, Tsai MJ and O’Malley BW: Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 1988, (55):361–369

    Article  PubMed  CAS  Google Scholar 

  19. Eriksson P and Wrange O: Protein-protein contacts in the glucocorticoid receptor homodimer influence its DNA binding properties. J Biol Chem 1990, (265):3536–3542

    Google Scholar 

  20. Meyer ME, Pornon A, Ji J, Bocquel MT, Chambon P and Gronemeyer H: Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J 1990, (12):3923–3932

    Google Scholar 

  21. Tora L, Gaub MP, Mader S, Dierich A, Bellard M and Chambon P: Cell-specific activity of a GGTCA half-palindromic oestrogen-responsive element in the chicken ovalbumin gene promoter. EMBO J 1988, (7):3771–3778

    PubMed  CAS  Google Scholar 

  22. Jeltsch JM, Krozowski Z, Quirin-Stricker C, Gronemeyer H, Simpson RJ, Gamier JM, Krust A, Jacob F and Chambon P: Cloning of the chickjen progesterone receptor. Proc Natl Acad Sci USA 1986, (83):5424–5428

    Article  PubMed  CAS  Google Scholar 

  23. Hard TE, Kellenbach E, Boelens R, Maler BA, Dahiman K, Freedman LP, Carlstedt-Duke J, Yamamoto KR, Gustafsson JA and Kaptein R: Solution structure of the glucocorticoid receptor DNA-binding domain. Science 1990, (249):157–160

    Article  PubMed  CAS  Google Scholar 

  24. Turcotte B, Meyer ME, Bocquel MT. Bélanger L and Chambon P: Repression of the alpha-fetoprotein gene promoter by progesterone and chimeric receptors in the presence of hormones and antihormones. Mol Cell Biol 1990, 10:5002–5006

    PubMed  CAS  Google Scholar 

  25. Our unpublished results

    Google Scholar 

  26. Kumar V, Green S, Stack G, Berry M, Jin JR and Chambon P: Functional domains of the human estrogen receptor. Cell 1987, (51):941–951

    Article  PubMed  CAS  Google Scholar 

  27. Fawell SE, Lees JA, White R and Parker MG: Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 1990, (60):953–962

    Article  PubMed  CAS  Google Scholar 

  28. Green S and Chambon P: Oestradiol induction of a glucocorticoid-responsive gene by a chimeric receptor. Nature 1987, (325):75–78

    Article  PubMed  CAS  Google Scholar 

  29. Green S, Kumar V, Theulaz I, Wahli W and Chambon P: The N-terminal DNA-binding zinc finger of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J 1988, (7):3037–3044

    PubMed  CAS  Google Scholar 

  30. Mader S, Kumar V, de Verneuil H and Chambon P: Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 1989, (338):271–274

    Article  PubMed  CAS  Google Scholar 

  31. Umesono K and Evans R: Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 1989, (57):1139–1146

    Article  PubMed  CAS  Google Scholar 

  32. Danielsen M, Hinck L and Ringold GM: Two amino acids within the knuckle of the first zinc finger specify DNA response element activation by the glucocorticoid receptor. Cell 1989, (57):1131–1138

    Article  PubMed  CAS  Google Scholar 

  33. Webster NJC, Green S, Rui Jin J and Chambon P: The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription and activation function. Cell 1988, (54):199–207

    Article  PubMed  CAS  Google Scholar 

  34. Hollenberg SM and Evans RM: Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 1988, (55):899–906

    Article  PubMed  CAS  Google Scholar 

  35. Godowski PJ, Pieard D and Yamamoto KR: Signal transduction and transcriptional regulation by glucocorticoid receptor-LexA fusion proteins. Science 1988, (241):812–816

    Article  PubMed  CAS  Google Scholar 

  36. Godowski PJ, Rusconi S, Miesfeld R and Yamamoto KR: Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 1987, (325):365–368

    Article  PubMed  CAS  Google Scholar 

  37. Gronemeyer H, Turcotte B, Quirin-Stricker C, Bocquel MT, Meyer ME, Krozowski Z, Jeltsch JM, Lerouge T, Gamier JM and Chambon P: The chicken progesterone receptor: sequence, expression and functional analysis, EMBO J 1987, (6):3985–3994

    PubMed  CAS  Google Scholar 

  38. Bocquel MT, Kumar V, Strieker C, Chambon P and Gronemeyer H: The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific. Nucl Acids Res 1989, (17):2581–2595

    Article  PubMed  CAS  Google Scholar 

  39. Tora L, White J, Brou C, Tasset D, Webster N, Scheer E and Chambon P: The human estrogen receptor contains two independent and different transcriptional activation functions whose properties are distinct from those of acidic activators. Cell 1989, (59):477–487

    Article  PubMed  CAS  Google Scholar 

  40. Tasset D, Tora L, Fromental C, Scheer E and Chambon P: Distinct classes of transcriptional activating domains function by different mechanisms. Cell 1990, (62):1177–1187

    Article  PubMed  CAS  Google Scholar 

  41. Berry M, Metzger D and Chambon P: Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J 1990 (9):2811–2818

    PubMed  CAS  Google Scholar 

  42. Baulieu EE: Contragestion and other clinical applications of RU486, an antiprogesterone at the receptor. Science 1989, (245):1351–1357

    Article  PubMed  CAS  Google Scholar 

  43. Meyer ME, Gronemeyer H, Turcotte B, Bocquel MT, Tasset D and Chambon P: Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 1989, (57):433–442

    Article  PubMed  CAS  Google Scholar 

  44. Fawell SE, White R, Hoare S, Sydenham M, Page M and Parker MG: Inhibition of estrogen receptor-DNA binding by the “pure” antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization. Proc Natl Acad Sci USA 1990, (87):6883–6887

    Article  PubMed  CAS  Google Scholar 

  45. Petkovich M, Brand NJ, Krust A and Chambon P: A human retinoic acid receptor belongs to the family of nuclear receptors. Nature 1987, (330):444–450

    Article  PubMed  CAS  Google Scholar 

  46. Giguére V, Ong E, Segui P and Evans RM: Identification of a receptor for the morphogen retinoic acid. Nature 1987, (330):624–629

    Article  PubMed  Google Scholar 

  47. Dolle P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas LJ and Chambon P: Differential expression of genes encoding alpha, beta and gamma retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 1989, (342):702–705

    Article  PubMed  CAS  Google Scholar 

  48. Krust A, Kastner P, Petkovich M, Zelent A and Chambon P: A third human retinoic acid receptor, hRAR-alpha. Proc Natl Acad Sci USA 1989, (86):5310–5314

    Article  PubMed  CAS  Google Scholar 

  49. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H and Chambon P: Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 1990, (5):1603–1614

    Google Scholar 

  50. Tora L, Gronemeyer H, Turcotte B, Gaub MP and Chambon P: The N-terminal region of the chicken progesterone receptor specifies target gene activation. Nature 1988, (333):185–188

    Article  PubMed  CAS  Google Scholar 

  51. Kastner P, Krust A, Mendelsohn C, Gamier JM, Zelent A, Leroy P, Staub A and Chambon P: Murine isoforms of retinoic acid receptor gamma with specific patterns of expression. Proc Natl Acad Sci USA 1990, (87):2700–2704

    Article  PubMed  CAS  Google Scholar 

  52. Strähle U, Boshart M, Klock G, Stewart F and Schütz G.: Glucocorticoid- and progesterone-specific effects are determined by differential expression of the respective hormone receptors. Nature 1989, (339):629–632

    Article  PubMed  Google Scholar 

  53. Ruberte E, Dolle P, Krust A, Zelent A, Morriss-Kay G and Chambon P: Specific spatial and temporal distribution of retinoic acid receptor gamma transcripts during mouse embryogenesis. Development 1990, (108):213–222

    PubMed  CAS  Google Scholar 

  54. Zelent A, Mendelsohn C, Kastner P, Krust A, Gamier JM, Ruffenach F, Leroy P and Chambon P: Differentially expressed isoforms of the mouse retinoic acid receptor beta are generated by usage of two promoters and alternative splicing. EMBO J 1990 (10):71–81

    Google Scholar 

  55. Leroy P, Krust A, Zelent A, Mendelsohn C, Gamier JM, Kastner P, Dierich A and Chambon P: Multiple isoforms of the mouse retinoic acid receptor alpha are generated by alternative splicing and differential induction by retinoic acid. EMBO J 1990, (10):59–69

    Google Scholar 

  56. Mangelsdorf DJ, Ong ES, Dyck JA and Evans RM: Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 1990, (345):224–229

    Article  PubMed  CAS  Google Scholar 

  57. Mukherjee R and Chambon P: A single-stranded DNA-binding protein promotes the binding of the purified oestrogen receptor to its responsive element. Nucl Acids Res 1990 (18):5713–5716

    Article  PubMed  CAS  Google Scholar 

  58. Ponglikitmongkol M, White JH and Chambon P: Synergistic activation of transcription by the human estrogen receptor bound to tandem responsive elements. EMBO J 1990, (9):2221–2231

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gronemeyer, H., Chambon, P. (1992). Steroids, Retinoids, and their Mode of Action. In: Sporn, M.B. (eds) Control of Growth Factors and Prevention of Cancer. ESO Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77383-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77383-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77385-3

  • Online ISBN: 978-3-642-77383-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics