Skip to main content

Interactions Between Macrophages and Legionella pneumophila

  • Chapter
Macrophage Biology and Activation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 181))

Abstract

Legionella pneumophila, the first member of the family Legionellaceae, is aerobic, motile, gram-negative bacterium that causes Legionnaires’ disease and Pontiac fever (Fraser et al. 1977; McDade et al. 1977; Glick et al. 1978). Although the family Legionellaceae now contains more than 40 species, L. pneumophila causes over 90% of human infections. L micdadei, the second most frequently isolated species in human infection, evidently has lower virulence for humans than L. pneumophila as it appears to infect only immunocompromised hosts (Myerowitz et al. 1971). L. pneumophila normally inhabits aquatic environments, and thus humans are accidental, albeit frequent hosts. The bacterium is spread to humans by the airborne route in aerosols arising out of contaminated sources; possibly, the organism is also spread to humans by the waterborne route (MUDER et al. 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand CM, Skinner AR, Malic A, Kurtz JB (1983) Interaction of L. pneumophila and a free living amoeba (Acanthamoeba palestinensis). J Hyg (Lond) 91: 167–178.

    Article  CAS  Google Scholar 

  • Armstrong JA, D’Arcy Hart P (1971) Response of cultured macrophages to Mycobacterium tuberculosis with observations on fusion of lysosomes with phagosomes. J Exp Med 134: 713–740.

    Article  PubMed  CAS  Google Scholar 

  • Barbaree JM, Fields BC, Feeley JC, Gorman GW, Martin WT (1986) Isolation of protozoa from water associated with a legionellosis outbreak and demonstration of intracellular multiplication of Legionella pneumophila. Appl Environ Microbiol 51: 422–424.

    PubMed  CAS  Google Scholar 

  • Bellinger-Kawahara CG, Horwitz MA (1987a) Legionella pneumophila fixes complement component C3 to its surface—demonstration by ELISA. In: Program of the 1987 Annual Meeting of the American Society of Microbiology, Atlanta, GA, March 1–6, p 86.

    Google Scholar 

  • Bellinger-Kawahara CG, Horwitz MA (1987b) The major outer membrane protein is a prominent acceptor molecule for complement component C3 on Legionella pneumophila. Clin Res 35: 468A.

    Google Scholar 

  • Bhardwaj N, Horwitz MA (1988) Gamma interferon and antibiotics fail to act synergistically to kill Legionella pneumophila in human monocytes. J Interferon Res 8: 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj N, Nash T, Horwitz MA (1986) Gamma interferon-activated human monocytes inhibit the intracellular multiplication of Legionella pneumophila. J Immunol 137: 2662–2664.

    PubMed  CAS  Google Scholar 

  • Blackwell JM, Ezekowitz RAB, Roberts MB, Channon JY, Sim RB, Gordon S (1985) Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J Exp Med 162: 324–331.

    Article  PubMed  CAS  Google Scholar 

  • Blander SJ, Horwitz MA (1989) Vaccination with the major secretory protein of Legionella pneumophila induces cell-mediated and protective immunity in a guinea pig model of Legionnaires’ disease. J Exp Med 169: 691–705.

    Article  PubMed  CAS  Google Scholar 

  • Blander SJ, Horwitz MA (1990a) Vaccination of guinea pigs with Legionella pneumophila membranes induces protective immunity against lethal aerosol challenge. Clin Res 38: 269A.

    Google Scholar 

  • Blander SJ, Horwitz MA (1990b) Cross-protective immunity to Legionnaires disease induced by vaccination with the major secretory protein of Legionella. Clin Res 38: 269A.

    Google Scholar 

  • Blander SJ, Breiman RF, Horwitz MA (1989) A live avirulent mutant Legionella pneumophila vaccine induces protective immunity against lethal aerosol challenge. J Clin Invest 83: 810–815.

    Article  PubMed  CAS  Google Scholar 

  • Blander SJ, Szeto L, Shuman HA, Horwitz MA (1990) The major seceretory protein of Legionella pneumophila, a protective immunogen, is not a virulence factor in a guinea pig model of Legionnaires’ disease. Clin Res 38: 589A.

    Google Scholar 

  • Breiman RF, Horwitz MA (1986) Guinea pigs sublethally infected with aerosolized Legionella pneumophila develop humoral and cell-mediated immune responses and are protected against lethal aerosol challange. A model for studying host defense against lung infections caused by intracellular pathogens. J Exp Med 164: 799–811.

    Google Scholar 

  • Breiman RF, Horwitz MA (1987) The major secretory protein of Legionella pneumophila stimulates proliferation of splenic lymphocytes from immunized guinea pigs. Clin Res 35: 469A.

    Google Scholar 

  • Bullock WE, Wright SD (1987) Role of the adherence-promoting receptors CR3, LFA-1, and p150,95 in binding of Histoplasma capsulatum by human macrophages. J Exp Med 165: 195–210.

    Article  PubMed  CAS  Google Scholar 

  • Byrd TF, Horwitz MA (1989) Interferon gamma-activated human monocytes down-regulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest 83: 1457–1465.

    Article  PubMed  CAS  Google Scholar 

  • Byrd TF, Horwitz MA (1990a) Iron-lactoterrin and non-physiologic iron-chelates reverse the capacity of activated monocytes to inhibit Legionella pneumophila intracellular multiplication. Clin Res 38: 368A.

    Google Scholar 

  • Byrd TF, Horwitz MA (1990b) Interferon gamma-activated human monocytes downregulate the intracellular concentration of ferritin: a potential new mechanism for limiting iron availability to Legionella pneumophila and subsequently inhibiting intracellular multiplication. Clin Res 38: 481A.

    Google Scholar 

  • Byrd TF, Horwitz MA (1990c) An individual’s monocytes which are uniquely non-permissive to Legionella pneumophila intracellular multiplication have low numbers of transferrin receptors, and iron reverses the non-permissive state. Clin Res 38: 304A.

    Google Scholar 

  • Chang KP (1979) Leishmania donovani promastigote—macrophage surface interactions in vitro. Exp Parasitol 48: 175–189.

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP, Eisenstein BI, Mody CH, Toews GB, Engleberg NC (1989a) A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect Immun 57: 1255–1262.

    PubMed  CAS  Google Scholar 

  • Cianciotto NP, Eisenstein BI, Engleberg NC (1989b) A site-directed mutation in Legionella pneumophila resulting in attenuation of both macrophage infectivity and virulence in guinea pigs. Clin Res 37: 561A.

    Google Scholar 

  • Ciesielski CA, Blaser MJ, Wong W-LL (1986) Serogroup specificity of Legionella pneumophila is related to lipopolysaccharide characteristics. Infect Immun 51: 397–404.

    PubMed  CAS  Google Scholar 

  • Clemens DL, Horwitz MA (1990) Demonstration that Legionella pneumophila produces its major secretory protein in infected human monocytes and localization of the protein by immunocyto-chemistry and immunoelectron microscopy. Clin Res 38: 480A.

    Google Scholar 

  • Daisy JA, Benson CE, McKitrick J, Friedman HM (1981) Intracellular replication of Legionella pneumophila. J Infect Dis 143: 460–464.

    Article  PubMed  CAS  Google Scholar 

  • Dreyfus LA, Iglewski BH (1986) Purification and characterization of an extracellular protease of Legionella pneumophila. Infect Immun 51: 736–743.

    PubMed  CAS  Google Scholar 

  • Eissenberg LG, Goldman WE (1986) Histoplasma capsulatum fails to trigger release of superoxide from macrophages. Infect Immun 55: 29–34.

    Google Scholar 

  • Eissenberg LG, Wyrick PB, Davis CH, Rumpp JW (1983) Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion. Infect Immun 40: 741–751.

    PubMed  CAS  Google Scholar 

  • Elliott JA, Winn WC (1986) Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila. Infect Immun 51: 31–36.

    PubMed  CAS  Google Scholar 

  • Esparza I, Fox RI, Schreiber RD (1986) Interferon-gamma-dependent modulation of C3b receptors (CRI) on human peripheral blood monocytes. J Immunol 136: 1360–1365.

    PubMed  CAS  Google Scholar 

  • Fields BS, Shotts EB, Feeley JC, Gorman GW, Martin WT (1984) Proliferation of Legionella pneumophila as an intracellular parasite of the ciliated protozon Tetrahymena pyriformis. Appl Environ Microbiol 47: 467–471.

    PubMed  CAS  Google Scholar 

  • Firestein GS, Zvaifler NJ (1987) Down regulation of human monocyte differentiation antigens by interferon gamma. Cell Immunol 104: 343–354.

    Article  PubMed  CAS  Google Scholar 

  • Fraser DW, Tsai TR, Orenstein W et al. (1977) Legionnaires’ disease. Description of an epidemic of pneumonia. N Engl J Med 297: 1189–1197.

    Article  PubMed  CAS  Google Scholar 

  • Friedman RL, Iglewski BH, Miller RD (1980) Identification of a cytotoxin produced by Legionella pneumophila. Infect Immun 29: 271–274.

    PubMed  CAS  Google Scholar 

  • Friedman RL, Lochner JE, Bigley RH, Iglewski BH (1982) The effects of Legionella pneumophila toxin on oxidative processes and bacterial killing of human polymorphonuehear leukocytes. J Infect Dis 146: 328–334.

    Article  PubMed  CAS  Google Scholar 

  • Friss RR (1972) Interaction of L-cells and Chlamydia psittaci—entry of the parasite and host response to its development. J Bacteriol 110: 706–721.

    Google Scholar 

  • Gabay JE, Horwitz MA (1985) Isolation and characterization of the cytoplasmic and outer membranes of the Legionnaires’ disease bacterium (Legionella pneumophila). J Exp Med 161: 409–422.

    Article  PubMed  CAS  Google Scholar 

  • Gabay JE, Blake MS, Niles W, Horwitz MA (1985) Purification of the major outer membrane protein of Legionella pneumophila and demonstration that it is a porin. J Bacteriol 162: 85–91.

    PubMed  CAS  Google Scholar 

  • Glick TH, Gregg MB, Berman B, Mallison GF, Rhodes WW Jr, Kassanoff I (1978) Pontiac fever: an epidemic of unknown etiology in a health department. I. Clinical and epidemiologic aspects. Am J Epidemiol 107: 149–160.

    PubMed  CAS  Google Scholar 

  • Holden EP, Winkler HH, Wood DO, Leinbach ED (1984) Intracellular growth of Legionella pneumophila within Acanthamoeba castellanii Neff. Infect Immun 45: 18–24.

    PubMed  CAS  Google Scholar 

  • Holzer TJ, Nelson KE, Schauf V, Crispen RG, Anderson BR (1986) Mycobacterium leprae fails to stimulate phagocytic cell superoxide anion generation. Infect Immun 51: 514–520.

    PubMed  CAS  Google Scholar 

  • Horwitz MA (1983a) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158: 1319–1331.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA (1983b) The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158: 2108–2126.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA (1983c) Cell-mediated immunity in Legionnaires’ disease. J Clin Invest 71: 1686–1697.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA (1984) Phagocytosis of the Legionnaires’ disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36: 33–37.

    Article  Google Scholar 

  • Horwitz MA (1985) Host resistance to Legionella pneumophila: interactions of L pneumophila with leukocytes. In: Katz SM (ed) Legionellosis, vol 2. CRC Press, Boca Raton, FL, pp 143–157.

    Google Scholar 

  • Horwitz MA (1987) Characterization of avirulent mutant Legionella pneumophila that survive but do not multiply within human monocyte. J Exp Med 166: 1310–1328.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA (1989) The immunobiology of Legionella pneumophila In: Moulder JW (ed) Intracellular Parasitism CRC Press, Boca Raton, FL, pp 141–156.

    Google Scholar 

  • Horwitz MA, Maxfield FR (1984) Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol 99: 1936–1943.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA, Silverstein SC (1980) The Legionnaires’ disease bacterium (Legionella pneumophila) multiplies intracellularly in human monocytes. J Clin Invest 66: 441–450.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA, Silverstein SC (1981a) Activated human monocytes inhibit the intracellular multiplication of Legionnaires’ disease bacteria. J Exp Med 154: 1618–1635.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA, Silverstein SC (1981b) Interaction of the Legionnaires’ disease bacterium (Legionella pneumophila) with human phagocytes. I. L. pneumophila resists killing by polymorphonuclear leukocytes, antibody, and complement. J Exp Med 153: 386–397.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA, Silverstein SC (1981c) Interaction of the Legionnaires’ disease bacterium (Legionella pneumophila) with human phagocytes. II. Antibody promotes binding of L pneumophila to monocytes but does not inhibit intracellular multiplication. J Exp Med 153: 398–406.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA, Silverstein SC (1983) The intracellular multiplication of Legionnaires’ disease bacteria (Legionella pneumophila) in human monocytes is reversibly inhibited by erythromycin and rifampin. J Clin Invest 71: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RF, Locksley RM, Wilson CB, Haas JE, Klebanoff SJ (1984) Interaction of primate alveolar macrophages and Legionella pneumophila. J Clin Invest 73: 1515–1523.

    Article  PubMed  CAS  Google Scholar 

  • Jensen WA, Rose RM, Wasserman AS, Kalb TH, Anton K, Remond HG (1987) In vitro activation of the antibacterial activity of human pulmonary macrophages by recombinant gamma interferon. J Infect Dis 155: 574–577.

    Article  PubMed  CAS  Google Scholar 

  • Jones TC, Hirsch JG (1972) The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. J Exp Med 136: 1173–1194.

    Article  PubMed  CAS  Google Scholar 

  • Jones TC, Yeh S, Hirsch JG (1972) The interaction between Toxoplasma gondii and mammalian cells. I. Mechanism of entry and intracellular fate of the parasite. J Exp Med 136: 1157–1172.

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto RA, Kastello MO, White JD, Shirey FG, McGann VG, Larson EW, Hedlund KW (1979) In vitro interaction between normal cynomolgus monkey alveolar macrophages and Legionnaires’ disease bacteria. Infect Immun 25: 761–763.

    PubMed  CAS  Google Scholar 

  • Kishimoto RA, White JD, Shirey FG, McGann VG, Berendt RF, Larson EW, Hedlund KW (1981) In vitro response of guinea pig peritoneal macrophages to Legionella pneumophila. Infect Immun 31: 1209–1213.

    PubMed  CAS  Google Scholar 

  • Lema MW, Brown A, Butler CA, Hoffman PS (1988) Heat shock response in Legionella pneumophila. Can J Microbiol 34: 1148–1153.

    Article  PubMed  CAS  Google Scholar 

  • Lochner JE, Friedman RL, Bigley RH, Iglewski BH (1983) Effect of oxygen-dependent antimicrobial systems on Legionella pneumophila. Infect Immun 38: 487–489.

    Google Scholar 

  • Locksley RM, Jacobs RF, Wilson CB, Weaver WM, Klebanoff SJ (1982) Susceptibility of Legionella pneumophila to oxygen-dependent microbicidal systems. J Immunol 129: 2192–2197.

    PubMed  CAS  Google Scholar 

  • Marra A, Horwitz MA, Shuman HA (1990) The HL-60 model for the interaction of human macrophages with the Legionnaires’ disease bacterium. J Immunol 144: 2738–2744.

    PubMed  CAS  Google Scholar 

  • McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR and the Laboratory Investigation Team (1977) Legionnaires’ disease. Isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297: 1197–1203.

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Edelson PJ (1984) Activation of the alternative complement pathway by Leishmania promastigotes: parasite lysis and attachment to macrophages. J Immunol 132: 1501–1505.

    PubMed  CAS  Google Scholar 

  • Mosser DM, Edelson PJ (1985) The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J Immunol 135: 2785–2789.

    PubMed  CAS  Google Scholar 

  • Muder RR, Yu VL, Woo AH (1986) Mode of transmission of Legionella pneumophila: a critical review. Arch Intern Med 146: 1607–1612.

    Article  PubMed  CAS  Google Scholar 

  • Myerowitz RL, Pasculle AW, Dowling JN et al. (1971) Opportunistic lung infection due to “Pittsburgh Pneumonia Agent”. N Engl J Med 301: 953–958.

    Article  Google Scholar 

  • Nash TW, Libby DM, Horwitz MA (1984) Interaction between the Legionnaires’ disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymph-okines, and hydrocortisone. J Clin Invest 74: 771–782.

    Article  PubMed  CAS  Google Scholar 

  • Nash T, Libby DM, Horwitz MA (1988) Gamma interferon activated human alveolar macrophages inhibit the intracellular multiplication of Legionella pneumophila. J Immunol 140: 3978–3981.

    PubMed  CAS  Google Scholar 

  • Newman SL, Musson RA, Henson PM (1980) Development of functional complement receptors during in vitro maturation of human monocytes into macrophages. J Immunol 125: 2236–2243.

    PubMed  CAS  Google Scholar 

  • Newsome AL, Baker RL, Miller RD, Arnold RR (1985) Interactions between Naegleria fowleri and Legionella pneumophila. Infect Immun 50: 449–452.

    PubMed  CAS  Google Scholar 

  • Nogueira N, Cohn ZA (1976) Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J Exp Med 143: 1402–1420.

    Article  PubMed  CAS  Google Scholar 

  • Oldham LJ, Rodgers FG (1985) Adhesion, penetration and intracellular replication of Legionella pneumophila: an in vitro model of pathogenisis. J Gen Microbiol 131: 697–706.

    PubMed  CAS  Google Scholar 

  • Pau C-P, Plikaytis BB, Carlone GM, Warner IM (1988) Purification, partial characterization, and seroreactivity of a genuswide 60-kilodalton Legionella protein antigen. J Clin Microbiol 26: 67–71.

    PubMed  CAS  Google Scholar 

  • Payne NR, Horwitz MA (1987) Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J Exp Med 166: 1377–1389.

    Article  PubMed  CAS  Google Scholar 

  • Payne NR, Bellinger-Kawahara CG, Horwitz MA (1987) Phagocytosis of Mycobacterium tuberculosis by human monocytes is mediated by receptors for the third component of complement. Clin Res 35: 617A.

    Google Scholar 

  • Perry A, Engleberg NC, Eisenstein BI (1987) An inhibitor of myeloperoxidase-mediated protein iodination isolated from Legionella pneumophila. Clin Res 35: 617A.

    Google Scholar 

  • Puentes SM, Sacks DL, da Silva R, Joiner KA (1988) Complement binding by two developmental stages of Leishmania major promastigotes varying in expression of a surface glycolipid. J Exp Med 167: 887–902.

    Article  PubMed  CAS  Google Scholar 

  • Sampson JS, Plikaytis BB, Wilkinson HW (1986) Immunologic response to patients with legionellosis against major protein—containing antigens of Legionella pneumophila serogroup 1 as shown by immunoblot analysis. J Clin Microbiol 23: 92–99.

    PubMed  CAS  Google Scholar 

  • Schlesinger LS, Horwitz MA (1990) Phagocytosis of leprosy bacilli is mediated by complement receptors CR1 and CR3 on human onocytes and complement component C3 in serum. J Clin Invest 85: 1304–1314.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA (1990) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144: 2771–2780.

    PubMed  CAS  Google Scholar 

  • Shinnick TM, Vodkin MH, Williams JC (1988) The Mycobacterium tuberculosis 65-kilodalton antigen is a heat shock protein which corresponds to common antigen and to the Escherichia coil Gro EL protein. Infect Immun 56: 446–451.

    PubMed  CAS  Google Scholar 

  • Sibley LD, Weidner E, Krahenbuhl JL (1985) Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature 315: 416–419.

    Article  PubMed  CAS  Google Scholar 

  • Tanowitz H, Wittner M, Kress Y, Bloom B (1975) Studies of in vitro infection by Trypanosoma cruzi. I. Ultrastructural studies on the invasion of macrophages and L-cells. Am J Trop Med Hyg 25: 25–33.

    Google Scholar 

  • Todd WJ, Storz J (1975) Ultrastructural cytochemical evidence for the activation of lysosomes in the cytocidal effect of Chlamydia psittaci in macrophages. Infect Immun 12: 638–646.

    PubMed  CAS  Google Scholar 

  • Tyndall RL, Domingue EL (1992) Cocultivation of Legionella pneumophila and free-living amoebae. Appl Environ Microbiol 44: 954–959.

    Google Scholar 

  • Wadowsky RM, Butler LJ, Cook MK et al. (1988) Growth-supporting activity for Legionella pneumophila in tap water cultures and implication of Hartmannellid amoebae as growth factors. Infect Immun 54: 2677–2682.

    CAS  Google Scholar 

  • Wilson CB, Tsai V, Remington JS (1980) Failure to trigger the oxidative burst by normal macrophages. Possible mechanism for survival of intracellular pathogens. J Exp Med 151: 328–346.

    Article  PubMed  CAS  Google Scholar 

  • Wilson ME, Pearson RC (1987) Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infect Immun 56: 363–369.

    Google Scholar 

  • Wong MC, Ewing EP Jr, Callaway CS, Peacock WL Jr (1990) Intracellular multiplication of Legionella pneumophila in cultured human embryonic lung fibroblasts. Infect Immun 28: 1014–1018.

    Google Scholar 

  • Wozencraft AO, Sayers G, Blackwell JM (1986) Macrophage type 3 complement receptors mediate serum-independent binding of Leishmania donovani. J Exp Med 164: 1332–1337.

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Silverstein SC (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158: 2016–2023.

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Detmers PA, Jong MTC, Meyer BC (1986) Interferon gamma depresses binding of ligand by C3b and C3bi receptors on cultured human monocytes, an effect reversed by fibronectin. J Exp Med 163: 1245–1259.

    Article  PubMed  CAS  Google Scholar 

  • Wyrick PB, Brownridge EA (1978) Growth of Chlamydia psittaci in macrophages. Infect Immun 19: 1054–1060.

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Johnston RB Jr (1984) Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med 159: 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Klein TW, Newton CA, Widen R, Friedman H (1987) Differential growth of Legionella pneumophila in guinea pig versus mouse macrophage cultures. Infect Immun 55: 1369–1374.

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Klein TW, Newton CA, Widen R, Friedman H (1988) Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect Immun 56: 370–375.

    PubMed  CAS  Google Scholar 

  • Yoshida S-I, Mizuguchi Y (1986) Multiplication of Legionella pneumophila Philadelphia-1 in cultured peritoneal macrophages and its correlation to susceptibility of animals. Can J Microbiol 32: 438–442.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horwitz, M.A. (1992). Interactions Between Macrophages and Legionella pneumophila. In: Russell, S.W., Gordon, S. (eds) Macrophage Biology and Activation. Current Topics in Microbiology and Immunology, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77377-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77377-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77379-2

  • Online ISBN: 978-3-642-77377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics