Contrast Medium Induced Nephropathy: Animal Experiments

  • H. S. Thomsen
  • K. Golman
  • L. Hemmingsen
  • S. Larsen
  • P. Skaarup
  • O. Svendsen
Part of the Frontiers in European Radiology book series (FER, volume 9)


Contrast medium induced nephropathy may be defined as an acute impairment of renal function that follows exposure to radiographic contrast materials, and for which alternative etiologies have been excluded. Acute renal insufficiency has been reported following exposure to contrast media administered by intravenous and intra-arterial routes. Contrast media may account for as many as 12% of episodes of hospital-acquired acute renal failure, thus exceeding aminoglycoside antibiotics in nephrotoxic potential (Hou et al. 1983). The incidence of contrast medium induced nephropathy is difficult to establish with certainty from the literature, since incidence figures in various reports vary depending on the population studied, the definition of acute renal failure, and differences in methodology (Jevnikar et al. 1988). Furthermore, the true incidence of nonoliguric contrast medium induced nephropathy is not known because it is not routine to systematically monitor renal function following contrast medium administration. Clinically, the glomerular filtration rate is usually assessed indirectly by measuring serum creatinine concentrations or, more precisely, by measuring creatinine clearance. This operational definition may greatly underestimate toxicity that is not severe enough to affect these rather insensitive markers of renal function. Serum creatinine concentration, the measure most often used as indicator of renal dysfunction, may not be elevated above the normal range until glomerular filtration rate falls below 50% of normal values because of its nonlinear relation to glomerular filtration rate.


Diabetic Nephropathy Serum Creatinine Concentration Nephrotoxic Drug Silver Methenamine Sodium Maleate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrechtsson U, Hultberg B, Lârusdôttir H, Norgren L (1985) Nephrotoxicity of ionic and non-ionic contrast media in aorto-femoral angiography. Acta Radiol Diagn 26: 615–618Google Scholar
  2. Almén T, Bergqvist D, Cederholm C, Husberg B, Takolander R, Weibull (1988) Interactive effects on renal fuctions between renal ischemia and intravascular contrast media. Invest Radiol 23 (Suppl 1): S161-S163PubMedCrossRefGoogle Scholar
  3. Almén T (1990a) CM and renal ischemia. In: Thomsen HS (ed) Uroradiology Copenhagen ’90. FADL, Copenhagen pp 102–106Google Scholar
  4. Almén T (1990b) Diabetic nephropathy and CM. In: Thomsen HS (ed) Uroradiology Copenhagen ’90. FADL, Copenhagen pp 116–118Google Scholar
  5. Bellin MF, Deray G, Boulechvar H, Gobin PY, Grellet J, Jacobs C (1990) Nephrotoxicity of contrast media in high-risk patients: Comparison of low- and high-osmolar contrast agents. In: RNSA book of abstracts 1990 p 118Google Scholar
  6. Berns AS (1989) Nephrotoxicity of contrast media. Kidney Int 36: 730–740PubMedCrossRefGoogle Scholar
  7. Brezis M, Epstein FH (1989) A closer look at radiocontrast-induced nephropathy (editorial). N Engl J Med 320: 179–180PubMedCrossRefGoogle Scholar
  8. Brezis M, Rosen S, Silva P, Epstein FH (1984) Renal ischemia. A new perspective. Kidney Int 36: 375–383CrossRefGoogle Scholar
  9. Byse BH, Zuckerman DA, Athanasoulis CA, Waltman AC (1990) Contrast-induced renal failure in patients with preexisting renal insufficiency: comparison of ionic and nonionic contrast media. In: RNSA book of abstracts 1990 p 118Google Scholar
  10. Cameron DF (1918) Aqueous solutions of potassium and sodium iodide as opaque medium in roentgenography. JAMA 70: 754–759CrossRefGoogle Scholar
  11. Cederholm C, Almén T, Bergqvist D, Golman K, Takolander R (1986) Acute renal failure in rats. Interaction between contrast medium and renal arterial occlusion. Acta Radiol 27: 241–247Google Scholar
  12. Cederholm C, Almén T, Bergqvist D, Golman K, Takolander R (1989) Acute renal failure in rats. Interaction between different contrast media and temporary renal arterial occlusion. Acta Radiol 30: 321–326PubMedCrossRefGoogle Scholar
  13. Crawford ES, Beal AC, Moyer JH, Debakey ME (1957) Complications of aortography. Surg Gynecol Obstet 104: 129–135PubMedGoogle Scholar
  14. Davidson CJ, Hlatky M, Morris KG et al. (1989) Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catherization. A prospective trial. Ann Int Med 110: 119–124PubMedGoogle Scholar
  15. Dubach US, Le Hir M, Gandhi R (1988) Use of urinary enzymes as markers of nephrotoxicity. Toxicol Letters 46: 193–196CrossRefGoogle Scholar
  16. Golman, K, Aulie A, Törnquist C, Almén T (1982) Acute renal failure initiated by contrast media. In: Amiel M (ed) Contrast media in radiology. Springer, (Heidelberg New York, pp 215–217CrossRefGoogle Scholar
  17. Gomes AS, Lois JF, Baker JD, McGlade CT, Bunnell DH, Hartzman S (1989) Acute renal dysfunction in high-risk patients after angiography: Comparison of ionic and non-ionic contrast media. Radiology 170: 65–68PubMedGoogle Scholar
  18. Hanns BG, Valencia SH, Shah SV, Vari RC (1990) The effect of combining predisposing risk factors on induction of contrast medium induced acute renal failure in the rats (abstract). Kidney Int 37: 480Google Scholar
  19. Hartmann HG (1983) Enzymuria after administration of water-soluble X-ray contrast media. In: Tanzer V, Zeitler E (eds) Contrast media in urography, angiography and computerized tomography. Thieme, Stuttgart, pp 30–36Google Scholar
  20. Heyman SN, Brezis M, Reubinoff CA et al. (1988) Acute renal failure with selective medullary injury in the rat. J Clin Invest 82: 401–412PubMedCrossRefGoogle Scholar
  21. Holland MD, Galla JH, Sanders PW, Luke RG (1985) Effect of urinary pH and diatrizoate on Bence Jones protein nephrotoxicity in the rat. Kidney Int 27: 46–50PubMedCrossRefGoogle Scholar
  22. Holtås S (1978) Proteinuria following nephroangiography. Clinical and experimental findings. Thesis, University of LundGoogle Scholar
  23. Hou SH, Bushinsky DA, Wish JB, Cohan JJ, Harrington JT (1983) Hospital-acquired renal insufficiency: a prospective study. Am J Med 74: 243–248PubMedCrossRefGoogle Scholar
  24. Janle-Swain E (1985) Animal models of diabetic nephropathy. In: Ash SR, Thornhill JA (eds) Handbook of animal models of renal failure. CRC Press, Boca Baton pp 183–214Google Scholar
  25. Jevnikar AM, Finnie KJC, Dennis B, Plummer DT, Avila A, Linton AL (1988) Nephrotoxicity of high- and low-osmolality contrast media. Nephron 48: 300–305PubMedCrossRefGoogle Scholar
  26. Katayama H, Yamaguschi K, Kozuka T, Takashima T, Seez P, Matsuura K (1990) Adverse reactions to ionic and nonionic contrast media. A report from the Japanese committee on the safety of contrast media. Radiology 175: 621–628PubMedGoogle Scholar
  27. Katzberg RW, Morris TW, Schulman G et al. (1983) Reactions to intravenous contrast media. Part II: Acute renal response in euvolemic and dehydrated dogs. Radiology 147: 331–334PubMedGoogle Scholar
  28. Katzberg RW, Morris TM, Lasser EC et al. (1986) Acute systemic and renal hemodynamic effects of meglumine/sodium diatrixoate 76% and iopamidol in euvolemic and dehydrated dogs. Invest Radiol 21: 793–797PubMedCrossRefGoogle Scholar
  29. Kinnison ML, Powe NR, Steinberg EP (1989) Results of randomized controlled trials of low- versus high-osmolality contrast media. Radiology 170: 381–389PubMedGoogle Scholar
  30. Lauwerys R, Bernard A (1989) Preclinical detection of nephrotoxicity: Description of the test and appraisal of their health significance. Toxicol Letters 46: 13–29CrossRefGoogle Scholar
  31. Love L, Lind Jr JA, Olson MC (1989) Persistent CT nephrogram: Significance in the diagnosis of contrast nephropathy. Radiology 172: 125–129PubMedGoogle Scholar
  32. McLachlin MSF, Chick S, Roberts EE, Asscher AW (1972) Intravenous urography in experimental acute renal failure in the rat. Invest Radiol 7: 466–473CrossRefGoogle Scholar
  33. Miller GM, Wylie EJ, Hinman F (1954) Renal complications from aortography. Surgery 35: 885–895PubMedGoogle Scholar
  34. Mudge GH (1980) Nephrotoxicity of urographic radiocontrast drugs. Kidney Int 18: 540–552PubMedCrossRefGoogle Scholar
  35. Mudge GH (1982a) Nephrotoxicity associated with the use of radiological contrast drugs. Monogr Appl Toxicol 1: 460–473Google Scholar
  36. Mudge GH (1982b) Comparative pharmacology of the kidney: Implications for drug-induced renal failure. Monogr Appl Toxicol 1: 504–518Google Scholar
  37. Mützel W, Speck U (1980) Pharmacokinetics and biotransformation of iohexol in the rat and the dog. Acta Radiol Suppl. 362: 87–92PubMedGoogle Scholar
  38. Osborne ED, Sutherland CG, Scholl AJ, Rowntree LG (1923) Roentgenography of the urinary tract during excretion of sodium iodide. JAMA 80: 368–376CrossRefGoogle Scholar
  39. Parfrey PS, Griffiths SM, Barrett BJ et al. (1989) Contrast material induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med 320: 143–149PubMedCrossRefGoogle Scholar
  40. Piscator M (1989) Markers of tubular dysfunction. Toxicol Letters 46: 197–204CrossRefGoogle Scholar
  41. Price RG (1982) Urinary enzymes, nephrotoxicity and renal disease. Toxicology 23: 99–134PubMedCrossRefGoogle Scholar
  42. Rosenworcel E, Feig PU (1979) An approach to proteinuria. Compr Ther 5: 26–27PubMedGoogle Scholar
  43. Rygaard H, Dorph S, Thomsen HS et al. (1988) Effects of intravenous injection of diatrizoate, iohexol or ioxilan on renal size, urine profiles and blood profiles in the rabbit. Acta Radiol 29: 491–494PubMedCrossRefGoogle Scholar
  44. Schreiner GE, Maher JF (1965) Toxic nephropathy. Am J Med 38: 409–449PubMedCrossRefGoogle Scholar
  45. Schwab SJ, Hlatky MA, Pieper KS et al. (1989) Contrast nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiographic contrast agent. N Engl J Med 320: 149–153PubMedCrossRefGoogle Scholar
  46. Sjöberg S, Almén T, Golman K (1980) Excretion of urographic contrast media. I. Iohexol and other media during free urine flow in the rabbit. Acta Radiol (Suppl) 362: 93–98Google Scholar
  47. Skaarup P (1978) Urinary excretion of plasma proteins in renal and extrarenal diseases. FADL, Copenhagen (Thesis, University of Copenhagen)Google Scholar
  48. Thomsen HS, Dorph S, Mygind T et al. (1988a) Intravenous injection of ioxilan, iohexol and diatrizoate. Effects on urine profiles in the rat. Acta Radiol 29: 131–136PubMedGoogle Scholar
  49. Thomsen HS, Dorph S, Mygind T et al. (1988b) Do contrast media aggravate Fanconi’s syndrome in rats? A comparison of diatrizoate, iohexol, and ioxilan. Invest Radiol 23 (Suppl 1): S164-S167PubMedCrossRefGoogle Scholar
  50. Thomsen HS, Hemmingsen L, Dorph S, Skaarup P (1988c) Effects on urine profiles of diatrizoate in hydrated and dehydrated rats. A double cross-over study. Acta Radiol 29: 731–735PubMedGoogle Scholar
  51. Thomsen HS, Larsen S, Hemmingsen L, Holm J, Skaarup P (1989a) Nephropathy induced by intramusculary administered glycerol and contrast media in rats. Acta Radiol 30: 217–222PubMedCrossRefGoogle Scholar
  52. Thomsen HS, Larsen S, Skaarup P, Hemmingsen L, Dieperink H, Golman K (1989b) Nephrotoxicity of cyclosporin A and contrast media. A comparison between diatrizoate and iohexol in rats. Acta Radiol 30: 647–653PubMedCrossRefGoogle Scholar
  53. Thomsen HS, Golman K, Hemmingsen L, Larsen S, Skaarup P (1990a) Adriamycin nephrosis and contrast media. A comparison between diatrizoate and iohexol in rats. Acta Radiol 31: 93–98PubMedGoogle Scholar
  54. Thomsen HS, Skaarup P, Larsen S, Golman K, Hemmingsen L (1990b) Gentamicin nephropathy and contrast media. A comparison between diatrizoate and iohexol in rats. Acta Radiol 31: 401–407PubMedGoogle Scholar
  55. Thomsen HS, Hemmingsen L, Golman K, Skaarup P, Larsen S (1990c) Low sodium diet, indomethacin, and contrast media. A comparison between renal effects of diatrizoate and iohexol in rats. Acta Radiol 32:613–618Google Scholar
  56. Thomsen HS, Golman K, Larsen S, Hemmingsen L, Skaarup P (1991a) Urine profiles and kidney histology following intravenous diatrizoate and iohexol in the degeneration phase of gentamicin nephropathy in rats. Invest Radiol 26: 951–959PubMedCrossRefGoogle Scholar
  57. Thomsen HS, Golman K, Svendsen O, Skaarup P, Hemmingsen L, Larsen S (1991b) Pretreatment with steroids before injection of diatrizoate or iohexol. Effects on urine and serum profiles in rats. Invest Radiol 26: 1083–1086PubMedCrossRefGoogle Scholar
  58. Törnquist C (1985) Nephrotoxicity of ionic and non-ionic contrast media in experimental and clinical nephroangiography. With special reference to ionic diatrizoate and metrizoate and non-ionic iohexol. Thesis, University of LundGoogle Scholar
  59. Vaamonde CA, Bier RT, Papendick R et al. (1989) Acute and chronic renal effects of radiocontrast in diabetic rats: role of anesthesia and risk factors. Invest Radiol 24: 206–218PubMedCrossRefGoogle Scholar
  60. Vari RC, Natrajan LA, Whitescarver SA, Jackson BA, Ott CE (1988) Induction, prevention and mechanisms of contrast media-induced acute renal failure. Kidney Int 33: 699–707PubMedCrossRefGoogle Scholar
  61. Whitehouse RW (1986) High- and low-osmolar contrast agents in urography. A comparison of the appearances with respect to pyelotubular opacification and renal length. Clin Radiol 37: 395–398PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H. S. Thomsen
    • 1
  • K. Golman
    • 5
  • L. Hemmingsen
    • 3
  • S. Larsen
    • 2
  • P. Skaarup
    • 3
  • O. Svendsen
    • 4
  1. 1.Department of Diagnostic Radiology, Herlev HospitalUniversity of CopenhagenHerlevDenmark
  2. 2.Institute of Pathology, Herlev HospitalUniversity of CopenhagenHerlevDenmark
  3. 3.Department of Clinical ChemistryCentralsygehusetNykøbing FalsterDenmark
  4. 4.Scantox A/SLille SkensvedDenmark
  5. 5.Department of Experimental Research, Malmö, General HospitalUniversity of LundMalmöSweden

Personalised recommendations