Magnetic Resonance Spectroscopy of Skeletal Muscle

  • F. Träber
  • W. A. Kaiser
  • G. Layer
  • C. Kuhl
  • M. Reiser
Conference paper
Part of the Frontiers in European Radiology book series (FER, volume 9)

Abstract

The interaction between nuclear magnetic moments and an external magnetic field gives rise to the phenomenon of nuclear magnetic resonance (NMR), which was discovered in 1946 by Bloch and Purcell The Larmor frequency (ν = γB eff ) depends on the gyromagnetic ratio (γ) of a particular nucleus and on the effective field strength (B eff ) at the spin site. As the electron cloud causes diamagnetic shielding of the external field, the resonance frequency is influenced by the chemical structure. In this way, many compounds of the same element may be identified by their— usually very small—chemical shift relative to a reference substance. In magnetic resonance imaging (MRI) the chemical shift between protons in water and in fatty tissue results in image artifacts at the tissue boundaries but can also be used for chemically selective excitation. While tissue characterization by MRI is based upon differences in the relaxation times T1 and T2 and in the spin density, magnetic resonance spectroscopy (MRS) investigates the distribution and the dynamic changes of biochemically important metabolites by analyzing the resonance lines in the frequency spectrum. Extremely high homogeneity of the magnetic field is needed, however, to obtain sufficient separation of the spectral components. As the frequency shift is directly proportional to the field strength, spectral resolution is improved by an increase of the magnetic field. This is especially important in 1H-MRS, where the chemical shifts are in the order of only a few parts per million in most cases.

Keywords

Fatigue Phosphorus Lactate Adenosine Pyruvate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argov Z, Bank WJ, Maris J, Eleff S, Kennaway NG, Olson RE, Chance B (1986) Treatment of mitochondrial myopathy due to complex III deficiency with vitamins K3 and C: A 31P-NMR follow-up study. Ann Neurol 19: 598–602PubMedCrossRefGoogle Scholar
  2. Argov Z, Bank WJ, Maris J, Peterson P, Chance B (1987a) Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology 37: 257–262PubMedGoogle Scholar
  3. Argov Z, Bank WJ, Maris J, Chance B (1987b) Muscle energy metabolism in McArdle’s syndrome by in vivo phosphorus magnetic resonance spectroscopy. Neurology 37: 1720–1724PubMedGoogle Scholar
  4. Argov Z, Bank WJ, Maris J, Leigh JS, Chance B (1987c) Muscle energy metabolism in human phosphofructokinase deficiency as recorded by 31P nuclear magnetic resonance spectroscopy. Ann Neurol 22: 46–51PubMedCrossRefGoogle Scholar
  5. Arnold DL, Taylor DJ, Radda GK (1985) Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 18: 189–196PubMedCrossRefGoogle Scholar
  6. Bárány M, Siegel IM, Venkatasubramanian PN, Mok, E, Wilbur A (1989a) Human leg neuromuscular diseases: 31P MR spectroscopy. Radiology 172: 503–508PubMedGoogle Scholar
  7. Bárány M, Venkatasubramanian PN, Mok E, Siegel IM, Abraham E, Wycliffe ND, Mafee MF (1989b) Quantitative and qualitative fat analysis in human leg muscle of neuromuscular diseases by 1H MR spectroscopy in vivo. Magn Reson Med 10: 210–226PubMedCrossRefGoogle Scholar
  8. Baum J, Tycko R, Pines A (1983) Broadband population inversion by phase modulated pulses. J Chem Phys 79:.4643–4644Google Scholar
  9. Bendall MR, Pegg DT (1986) Uniform sample excitation with surface coils for in-vivo spectroscopy by adiabatic rapid half passage. J Magn Reson 67: 376–381CrossRefGoogle Scholar
  10. Bottomley PA (1989) Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe? Radiology 170: 1–15PubMedGoogle Scholar
  11. Chance B, Eleff S, Bank WJ (1982) 31P-NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Proc Natl Acad Sci USA 78: 7714–7718CrossRefGoogle Scholar
  12. Gordon RE, Hansley PE, Shaw D, Gadian DG, Radda GK, Styles P, Bore PJ, Chen L (1980) Localization of metabolites using 31P topical magnetic resonance. Nature 287–736Google Scholar
  13. Kaiser WA, Hartl W, Strum H, Schalke BCG, Zeitler E (1987) 31P-NMR-Spektroskopie bei Muskelerkrankungen: Korrelation zur MR-Bildgebung. Fortschr Röntgenstr 146: 137–144CrossRefGoogle Scholar
  14. Keller U, Oberhaensli R, Huber P, Widmer LK, Aue WP, Hassink RI, Muller S, Seelig J (1985) Phosphocreatine content and intracellular pH of calf muscle measured by phosphorus NMR spectroscopy in occlusive arterial disease of the legs. Eur J Clin Invest 15: 382–388PubMedCrossRefGoogle Scholar
  15. Lewis SF, Haller RG, Cook D, Nunnaly RL (1985) Muscle fatigue in McArdle’s disease studied by 31P-NMR: effect of glucose infusion. J Appl Physiol 59: 1991–1994PubMedGoogle Scholar
  16. Luyten PR, den Hollander JA (1986) 1H-MR spatially resolved spectroscopy of human tissues in situ. Magn Reson Imaging 4: 237–239PubMedCrossRefGoogle Scholar
  17. Luyten PR, Marien AJH, Heindel W, van Gerwen PHJ, Herholtz K, den Hollander JA, Friedmann G, Heiss WD (1990) Metabolic imaging of patients with intracranial tumors: H-1MR spectroscopic imaging and PET. Radiology 176: 791–799PubMedGoogle Scholar
  18. Mancini D, Ferraro N, Tuchler M, Chance B, Wilson JR (1988) Detection of abnormal calf muscle metabolism in patients with heart failure using 31P nuclear magnetic resonance. Am J Cardiol 62: 1234–1240PubMedCrossRefGoogle Scholar
  19. Newman RJ (1985) An in vivo study of muscle phosphate metabolism in Becker’s dystrophy by 31P NMR spectroscopy. Metabolism 34: 737–740PubMedCrossRefGoogle Scholar
  20. Nishikawa Y, Takahashi M, Yorifuji S, Nakamura Y, Ueno S, Tarui S, Kozuka T, Nishimura T (1989) Long-term coenzyme Q10 therapy for a mitochondrial encephalomyopathy with cytochrome c oxidase deficiency: a 31P NMR study. Neurology 39: 399–403PubMedGoogle Scholar
  21. Ordidge RJ, Connelly A, Lohman JAB (1986) Image-selective in-vivo spectroscopy (ISIS). J Magn Reson 66: 283–294CrossRefGoogle Scholar
  22. Radda GK, Bore PJ, Gadian DG, Ross BD, Styles P, Taylor DJ, Morgan-Hughes J (1982) 31P NMR examination of two patients with NADH-CoQ reductase deficiency. Nature 295: 608–609PubMedCrossRefGoogle Scholar
  23. Rajagopalan B, Conway MA, Massie B, Radda GK (1988) Alterations of skeletal muscle metabolism in congestive heart failure studied by 31P magnetic resonance spectroscopy. Am J Cardiol 62: 53E-57EPubMedCrossRefGoogle Scholar
  24. Träber F, Gieseke J, Steudel A, Lackner K (1987) Optimierung von Untersuchungssequenzen in der MR-Tomographie mit Hilfe von Isosignaldarstellungen. Fortschr Röntgenstr 146: 94–101CrossRefGoogle Scholar
  25. Träber F, Steudel A, Harder T (1990) In vivo Messung von Geweberelaxationszeiten mit lokalisierter 31P- und 1-MR-Spektroskopie. Fortschr Röntgenstr 153: 209–215Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • F. Träber
    • 1
  • W. A. Kaiser
    • 1
  • G. Layer
    • 1
  • C. Kuhl
    • 1
  • M. Reiser
    • 1
  1. 1.Radiologische KlinikUniversität BonnBonnGermany

Personalised recommendations