Advertisement

Monitoring pp 18-32 | Cite as

Monitoring Cardiac Output Continuously in the Operating Room and Intensive Care Unit

  • K. H. Wesseling
  • B. de Wit
  • J. J. Settels
  • J. R. C. Jansen
  • J. J. Schreuder
Chapter
  • 24 Downloads
Part of the Anaesthesiologie und Intensivmedizin Anaesthesiology and Intensive Care Medicine book series (A+I, volume 224)

Abstract

In a cardiac cycle cardiac outflow varies between zero in diastole and a certain peak flow in systole. Respiration and mechanical ventilation of the lungs cause a change in venous return and, therefore, in the filling and emptying of the ventricles, further modulating outflow in synchrony with respiration [14, 35]. In addition, various autonomic reflexes and reactions to stimuli such as pain, drugs, blood loss, hemodilution and psychological and physical stress also modulate cardiac output, rate and stroke volume. Finally, in disease cardiac arrhythmias may cause strong beat-to-beat modulation of stroke volume.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassingthwaighte JB, Knopp TJ, Anderson DU (1970) Flow estimation by indicator dilution. (Bolus injection): Reduction of errors due to time-averaged sampling during unsteady flow. Circ Res 27:277–291PubMedGoogle Scholar
  2. 2.
    Blackburn JP, Leigh JM (1972) Effect of injection and sampling site on dye dilution curves during hypotension. Cardiovasc Res 6:741–747PubMedCrossRefGoogle Scholar
  3. 3.
    Carey JS, Williamson H, Scott CR (1971) Accuracy of cardiac output computers. Ann Surg 174:762–768PubMedCrossRefGoogle Scholar
  4. 4.
    Coats AJS (1990) Doppler ultrasonic measurement of cardiac output: reproducibility and validation. Eur Heart J [Suppl I] 11:49–61PubMedGoogle Scholar
  5. 5.
    Donald DE, Yipintsoi T (1973) Comparison of measured and Indocyanine green blood flows in various organs and systems. Mayo Clin Proc 48:492–500PubMedGoogle Scholar
  6. 6.
    Doyle JT, Wilson JS, Lépine C, Warren JV (1953) An evaluation of the measurement of the cardiac output and of the so-called pulmonary blood volume by the dye-dilution method. J Lab Clin Med 41:29–39PubMedGoogle Scholar
  7. 7.
    Eliasch H (1952) The pulmonary circulation at rest and on effort in initial stension. Scand J Clin Lab Invest [Suppl 4] 4:1–99Google Scholar
  8. 8.
    Evonuk E, Irnig CJ, Greenfield W, Echstein JW (1961) Cardiac output measured by thermal dilution of room temperature injectate. J Appl Physiol 16:271–275PubMedGoogle Scholar
  9. 9.
    Fegler G (1954) Measurement of cardiac output in anaesthetized animals by a thermal dilution method. Q J Exp Physiol 39:153–164Google Scholar
  10. 10.
    Fegler G (1957) The reliability of the thermodilution method for determination of the cardiac output and the blood flow in central veins. Q J Exp Physiol 42:254–266Google Scholar
  11. 11.
    Fronek A, Ganz V (1960) Measurement of flow in single blood vessels including cardiac output by local thermodilution. Circ Res 8:175–182Google Scholar
  12. 12.
    Gauer OH (1972) Kreislauf des Blutes. In: Gauer OH, Kramer K, Jung R (Hrsg) Physiologie des Menschen, Bd 3. Urban & Schwarzenberg, MünchenGoogle Scholar
  13. 13.
    Goodyer AVN, Huvos A, Eckhardt WF, Ostberg RH (1959) Thermal dilution curves in the intact animal. Circ Res 7:432–441PubMedGoogle Scholar
  14. 14.
    Hoffman JIE, Guz A, Charlier AA, Wilcken DEL (1965) Stroke volume in conscious dogs: effect of respiration, posture and vascular occlusion. J Appl Physiol 20:865–877PubMedGoogle Scholar
  15. 15.
    Jansen JRC, Versprille A (1986) Improvement of cardiac output estimation by the thermodilution method during mechanical ventilation. Intensive Care Med 12:71–79PubMedCrossRefGoogle Scholar
  16. 16.
    Jansen JRC (1988) The thermodilution technique during artificial ventilation. Thesis, RotterdamGoogle Scholar
  17. 17.
    Jansen JRC, Wesseling KH, Settels JJ, Schreuder JJ (1990) Continuous cardiac output monitoring by pulse contour during cardiac surgery. Eur Heart J [Suppl I] 11:26–32PubMedGoogle Scholar
  18. 18.
    Jansen JRC, Schreuder JJ, Settels JJ, Kloek JJ, Versprille A (1990) An edequate strategy for the thermodilution technique in patients during mechanical ventilation. Intensive Care Med 16:422–425PubMedCrossRefGoogle Scholar
  19. 19.
    Juchems R (1965) Untersuchungen des Herzminuten-und Schlagvolumens mit einem neuen, flow-unabhängigen Densitometer und mit dynamischer Eichung. Arch Kreislaufforsch 46:281–289PubMedCrossRefGoogle Scholar
  20. 20.
    Kahlil HH, Richardson TQ, Guyton AC (1966) Measurement of cardiac output by thermal dilution and direct Fick methods in dogs. J Appl Physiol 21:1131–1135Google Scholar
  21. 21.
    Kinsman JM, Moore JW, Hamilton WF (1929) Studies on the circulation. I. Injection method: physical and mathematical considerations. Am J Physiol 89:322–330Google Scholar
  22. 22.
    Langewouters GJ, Wesseling KH, Goedhard WJA (1984) The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 17:425–435PubMedCrossRefGoogle Scholar
  23. 23.
    McDonald DA (1974) Blood flow in arteries, 2nd edn. Arnold, London, pp 420–445Google Scholar
  24. 24.
    Nichols WW (1973) Continuous cardiac output derived from the aortic pressure waveform: a review of current methods. Biomed Eng 8:376–379PubMedGoogle Scholar
  25. 25.
    Purschke R, Brucke P, Schulte HD (1974) Untersuchung zur Zuverlässigkeit der Schlagvolumenbestimmung aus der Aortendruckkurve, Teil II: Langzeitbeobachtung bei Patienten. Anaesthesist 23:525–534PubMedGoogle Scholar
  26. 26.
    Roselli RJ, Talbot L, Abbott JA (1975) Evaluation of the thermal dilution technique for the measurement of steady and pulsatile flows. J Biomech 8:157–166PubMedCrossRefGoogle Scholar
  27. 27.
    Saadjian A, Quercy JE, Torresani J (1976) Cardiac output measurement by thermodilution. Methodological problems. Med Prog Technol 3:161–167PubMedGoogle Scholar
  28. 28.
    Singh R, Ranieri AJ, Vest HR, Bowers DL, Dammann JJF (1970) Simultaneous determinations of cardiac output by thermal dilution, fiberoptic and dye-dilution methods. Am J Cardiol 25:579–587PubMedCrossRefGoogle Scholar
  29. 29.
    Smith NT, Wesseling KH, Weber JAP, Wit B de (1974) Preliminary evaluation of a pulse contour cardiac output computer in man. Feasibility of brachial or radial arterial pressures. Proc San Diego Biomed Symp 13:107–113Google Scholar
  30. 30.
    Stenson R, Cronse L, Harrison DC (1972) Computer measurement of cardiac output by dye dilution: comparison of computer, Fick and Dow techniques. Cardiovasc Res 6: 449–456PubMedCrossRefGoogle Scholar
  31. 31.
    Sullivan FJ, Mroz EA, Miller RE (1973) The precision of a special purpose analog computer in clinical cardiac output determination. Ann Surg 181:232–238CrossRefGoogle Scholar
  32. 32.
    Taylor SH (1966) Measurement of the cardiac output in man. Proc R Soc Med 19:35–53Google Scholar
  33. 33.
    Ten Hoor F (1969) Bepaling van de gemiddelde bloedstroomsterkte met indicatorverdunnings-methodes. Thesis, GroningenGoogle Scholar
  34. 34.
    Ten Hoor F, Rispens P, Buurma A, Fongers TME, Jurriens JM, Zijlma JA (1970) Quasisimultaneous cardiac output determinations in dogs with the direct Fick method and with the dye dilution method using a linear reflection densitometer. Pflügers Arch 314:148–149PubMedGoogle Scholar
  35. 35.
    Versprille A, Jansen JRC, Frietman RC, Hulsmann AR, Klauw MM van der (1990) Negative effect of insufflation on cardiac output and pulmonary blood volume. Acta Anaesth Scand 34:607–615PubMedCrossRefGoogle Scholar
  36. 36.
    Vliers ACAP (1970) Le principe de la thermodilution. Etude theorique et application en cardiologie pédiatrique. Thesis, LeuvenGoogle Scholar
  37. 37.
    Vliers ACAP, Oeseburg B, Visser KR, Zijlstra WG (1973) Choice of detection site for the determination of cardiac output by thermal dilution: the injection-thermistor-catheter. Cardiovasc Res 7:133–138PubMedCrossRefGoogle Scholar
  38. 38.
    Vliers ACAP, Zijlstra WG (1969) Zum Problem der Mischung von Indikator und Blut. Z Kreislaufforsch 58:79–88PubMedGoogle Scholar
  39. 39.
    Wessel HU, Pasel MH, James GW, Grakor AR (1971) Limitations of thermal dilution curves for cardiac output determinations. J Appl Physiol 30:643–652PubMedGoogle Scholar
  40. 40.
    Wesseling KH, de Wit B, Weber JAP, Smith NT (1983) A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Physiol 5 II: 16–52Google Scholar
  41. 41.
    Wesseling KH, Smith NT, Nichols WW, Wit B de, Weber JAP (1974) A small, beat-to-beat cardiac output computer. Proc San Diego Biomed Symp 13:101–106Google Scholar
  42. 42.
    Wesseling KH, Smith NT, Nichols WW, Weber H, Wit B de, Beneken JEW (1974) Beat-to-beat cardiac output from the arterial pressure pulse contour. In: Feldman SA, Leigh JM, Spierdijk J (eds) Measurement in anaesthesia. Leiden Univ Press, Leiden, pp 148–164Google Scholar
  43. 43.
    Wesseling KH, Purschke R, Smith NT, Schulte HD, Weber JAP (1976) A beat-to-beat cardiac output computer for clinical monitoring. In: Payne JP, Hill DW (eds) Realtime computing in patient management. Peregrinus, Stevenage, pp 92–112Google Scholar
  44. 44.
    Wilson EM, Ravieri JAJ, Updike OL, Dammann JF (1972) An evaluation of thermal dilution for obtaining serial measurements of cardiac output. Med Biol Eng 10:179–191PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • K. H. Wesseling
  • B. de Wit
  • J. J. Settels
  • J. R. C. Jansen
  • J. J. Schreuder

There are no affiliations available

Personalised recommendations