Skip to main content

The Helix-Loop-Helix Motif

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 6))

Abstract

Recently, families of transcription factors have been identified, having in common a region of homology in their DNA binding domain. Examples are DNA binding proteins containing zinc fingers, homeo-boxes, leucine zippers, etc. In this review I will discuss the structure and function of a new class of proteins that contain a region of homology in their DNA binding and dimerization domain, termed the helix-loop-helix (HLH) motif.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso MC, Cabrera CV (1988) The achaete-scute gene complex of Drosophila melanogaster comprises four homologous genes. EMBO J 7: 2585–2591

    PubMed  CAS  Google Scholar 

  • Alt FW, DePinho RA, Zimmerman K, Legouy E, Hutton K, Ferrier P, Tesfaye A, Yancopoulos GD, Nisen P (1986) The human myc-gene family. Cold Spring Harbor Symp Quant Biol 51: 931–941

    PubMed  CAS  Google Scholar 

  • Benezra R, Davis RL, Lockhon D, Turner DL, Weintraub H (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49–59

    Article  PubMed  CAS  Google Scholar 

  • Blackwood EM, Eisenman RN (1991) Max: a helix-loop-helix protein that forms a sequence-specific DNA-binding complex with myc. Science 251: 1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD induces myogenic conversion in 10T1/2 fibroblasts. EMBO J 8: 701–709

    PubMed  CAS  Google Scholar 

  • Brennan TJ, Olson EN (1990) Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization. Genes Dev 4: 582–595

    Article  PubMed  CAS  Google Scholar 

  • Buskin JN, Hauschka SD (1989) Identification of a myocyte nuclear factor which binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol Cell Biol 9: 2627–2640

    PubMed  CAS  Google Scholar 

  • Caudy M, Grell EH, Dambly-Chaudiere C, Ghysen A, Jan LY, Jan YN (1988a) The maternal sex determination gene daughterless has zygotic activity necessary for the formation of peripheral neurons in Drosophila. Genes Dev 2: 843–852

    Article  PubMed  CAS  Google Scholar 

  • Caudy M, Vaessin H, Brand M, Tuma R, Jan LY, Jan YN (1988b) daughterless, a gene essential for both neurogenesis and sex determination in Drosophila, has sequence similarities to myc and the achaete-scute complex. Cell 55:1061–1067

    Article  CAS  Google Scholar 

  • Church GM, Ephrussi A, Gilbert W, Tonegawa S (1985) Cell type specific contacts to immunoglobulin enhancers in nuclei. Nature (Lond) 313: 798–801

    Article  CAS  Google Scholar 

  • Cline TW (1989) The affairs of daughterless and the promiscuity of developmental regulators. Cell 59: 231–234

    Article  PubMed  CAS  Google Scholar 

  • Cordle SR, Henderson E, Masuoka H, Weil PA, Stein R (1991) Pancreatic β-cell type specific transcription of the insulin gene is mediated by basic helix-loop-helix DNA binding proteins. Mol Cell Biol 11: 1734–1738

    PubMed  CAS  Google Scholar 

  • Cronmiller C, Schedl P, Cline TW (1988) Molecular characterization of daughterless, a Drosophila sex determination gene with multiple roles in development. Genes Dev 2: 1666–1676

    Article  PubMed  CAS  Google Scholar 

  • Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000

    Article  PubMed  CAS  Google Scholar 

  • Davis RL, Cheng PF, Lassar AB, Weintraub H (1990) The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60: 773–746

    Article  Google Scholar 

  • Ellis HM, Spann DR, Posakony JW (1990) extramacrochaete, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. Cell 61:27–38

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi A, Church GM, Tonegawa S, Gilbert W (1985) B-lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227: 34–140

    Article  Google Scholar 

  • Garrell J, Modolel J (1990) The Drosophila extramacrochaete locus, an antagonist of proneural genes that like these genes, encodes a helix-loop-helix-protein. Cell 61: 39–48

    Article  PubMed  CAS  Google Scholar 

  • Henthorn P, Kiledjian M, Kadesch T (1990) Two distinct transcription factors that bind the immunoglobulin enhancer μE5/κE2 motif. Science 247: 467–470

    Article  PubMed  CAS  Google Scholar 

  • Kiledjian M, Su LK, Kadesch T (1988) Identification and characterization of two functional domains within the murine heavy chain enhancer. Mol Cell Biol 8: 145–149

    PubMed  CAS  Google Scholar 

  • Klaembt C, Knust E, Tietze K, Campos-Ortega JA (1989) Closely related transcripts encoded by the neurogenic gene complex enhancer of split of Drosophila melanogaster. EMBO J 8: 203–221

    CAS  Google Scholar 

  • Lenardo M, Pierce JW, Baltimore D (1987) Protein-binding sites in Ig enhancers determine transcriptional activity and inducibility. Science 236: 1573–1577

    Article  PubMed  CAS  Google Scholar 

  • McKeon FD, Kirschner MW, Capon D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature (Lond) 319: 463–468

    Article  CAS  Google Scholar 

  • Meister A, Weinrich SL, Nelson C, Rutter WJ (1989) The chymotrypsin enhancer core. J Biol Chem 264: 20744–20751

    PubMed  CAS  Google Scholar 

  • Mellentin JD, Smith SD, Cleary ML (1989) lyl-1, a novel gene altered by chromosomal translocation in T cell leukemias codes for a protein with a helix-loop-helix DNA binding motif. Cell 58:77–83

    Article  PubMed  CAS  Google Scholar 

  • Moss LG, Moss JB, Rutter WJ (1988) Systematic binding analysis of the insulin gene transcription control region: insulin and immunoglobulin enhancers utilize similar transactivators. Mol Cell Biol 8: 2620–2627

    PubMed  CAS  Google Scholar 

  • Murre C, Schonleber McCaw P, Baltimore D (1989a) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD and myc proteins. Cell 56: 777–783

    Google Scholar 

  • Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB, Weintraub H, Baltimore D (1989b) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537–544

    Article  PubMed  CAS  Google Scholar 

  • Murre C, Voronova A, Baltimore D (1991) B cell and myocyte specific E2 box DNA binding proteins contain E121E47-like subunits. Mol Cell Biol 11: 1156–1160

    PubMed  CAS  Google Scholar 

  • Nelson C, Shen LP, Meister A, Fodor E, Rutter WJ (1990) Pan: a transcriptional regulator that binds chymotrypsin, insulin and AP-4 enhancer motifs. Genes Dev 4: 1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Piette J, Bessereay JL, Huchet M, Changeux JP (1990) Two adjacent MyoD binding sites regulate expression of the acetylcholine receptor α-subunit. Nature (Lond) 345: 353–355

    Article  CAS  Google Scholar 

  • Rushlow CA, Hogan A, Pinchin SM, Howe KM, Lardelli M, Ish-Horowicz D (1989) The Drosophila hairy protein acts in both segmentation and bristle patterning shows homology to N-myc. EMBO J 8: 3095–3103

    PubMed  CAS  Google Scholar 

  • Sun X, Baltimore D (1991) The inhibitory domain of E12 prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64: 459–465

    Article  PubMed  CAS  Google Scholar 

  • Villares R, Cabrera CV (1987) The achaete-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50: 415–424

    Article  PubMed  CAS  Google Scholar 

  • Voronova A, Baltimore D (1990) Mutations that disrupt DNA binding and dimer formation in the E47 HLH protein map to distinct domains. Proc Natl Acad Sci USA 87: 4722–4726

    Article  PubMed  CAS  Google Scholar 

  • Wright WE, Sassoon DA, Lin VK (1989) Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 4: 607–617

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murre, C. (1992). The Helix-Loop-Helix Motif. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77356-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77356-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77358-7

  • Online ISBN: 978-3-642-77356-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics