Protein H-NS (H1a), Chromatin Structure, and Gene Expression

  • C. F. Higgins
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 6)


In any cell, chromosomal DNA must be folded and packaged in a manner consistent with DNA replication, transcription, and the ability to regulate gene expression. DNA packaging must, therefore, be flexible so that specific transcription units can be activated as necessary. In eukaryotic cells, at least following terminal differentiation, there is scope for permanent inactivation of certain genes; regions of the chromosome could be “silenced”. Many genes, however, must be available for induction or repression on a relatively short time scale. Such flexibility is even more important for prokaryotic cells. This transcriptionally accessible DNA must still be appropriately organized, given its length compared with the dimensions of the cell; in E. coli the chromosome is approximately 1 mm long yet must be packaged into a cell 1 µm in diameter! Additionally, it is now clear that structural features intrinsic to the DNA or induced by protein-DNA interactions, such as DNA bending and supercoiling, are important in determining levels of transcription.


Chromatin Structure Integration Host Factor Nucleosome Structure Specific Regulatory Protein Eukaryotic Histone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachmann BJ (1990) Linkage map of Escherichia coli K12, 8th edn. Microbiol Rev 54:130–197Google Scholar
  2. Benjamin WH, Turnbough CL, Goguen JD, Posey BS, Briles DE (1986) Genetic mapping of novel virulence determinants of Salmonella typhimurium to the region between trpD and fupD. Microb Pathog 1 (2): 115–124PubMedCrossRefGoogle Scholar
  3. Bertin P, Lejeune P, Laurent-Winter C, Danchin A (1990) Mutation in bglY, the structural gene for the DNA-binding protein Hl, affects expression of several Escherichia coli genes. Biochimie 72: 889–891PubMedCrossRefGoogle Scholar
  4. Broyles SS, Pettijohn DE (1986) Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J Mol Biol 187: 47–60Google Scholar
  5. Busby S, Kolb A, Buc H (1979) Isolation of plasmid — protein complexes from Escherichia coli. Eur J Biochem 99: 105–111PubMedCrossRefGoogle Scholar
  6. Cornelis GR, Sluiters C, Delor I, Geib D, Kaniga K, De Rouvroit CL, Sory M-P, Vanooteghem J-C, Michels T (1991) ymoA, A Yersinia enterocolitica chromosomal gene modulating the expression of virulence factors. Mol Microbiol 5: 1023–1034Google Scholar
  7. Defez R, DeFelice M (1981) Cryptic operon for ß-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Genetics 97: 11–25PubMedGoogle Scholar
  8. Deretic V, Mohr CD, Martin DW (1991) Mucoid Pseudomonas aeruginosa in cystic fibrosis: signal transduction and histone-like elements in the regulation of bacterial virulence. Mol Microbiol 5: 1577–1583PubMedCrossRefGoogle Scholar
  9. Diderichsen B (1980) cur-1, a mutation affecting the phenotype of sup+ strains of Escherichia coli. Mol Gen Genet 180:425–428Google Scholar
  10. Dorman CJ, Barr GC, Ni Bhriain N, Higgins CF (1988) DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol 170: 28162826Google Scholar
  11. Dorman CJ, Ni Bhriain N, Higgins CF (1990) DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature (London) 344: 789792Google Scholar
  12. Drlica K, Rouviere-Yaniv J (1987) Histone-like proteins of bacteria. Microbiol Rev 51: 301–319PubMedGoogle Scholar
  13. Dürrenberger MB, Bjornsti MA, Uetz T, Hobot JA, Kellenberger E (1988) Intracellular location of the histone-like protein HU. J Bacteriol 170: 4757–4768PubMedGoogle Scholar
  14. Dürrenberger MB, La Teana A, Citro G, Venanzi F, Gualerzi CO, Pon CL (1991) Escherichia coli DNA-binding protein H-NS is localized in the nucleoid. Res Microbiol 142: 373–380Google Scholar
  15. Falconi J, Gualtieri MJ, La Teana A, Losso MA, Pon CL (1988) Proteins from the prokaryotic nucleoid: primary and quaternary structure of the 15 kD Escherichia coli DNA binding protein H-NS. Mol Microbiol 2: 323–329PubMedCrossRefGoogle Scholar
  16. Falconi M, McGovern V, Gualerzi C, Hillyard D, Higgins NP (1991) Mutations altering chromosomal protein H-NS induce mini-Mu transposition. New Biol 3: 615–625PubMedGoogle Scholar
  17. Friedrich K, Gualerzi CO, Lammi M, Losso MA, Pon CL (1988) Proteins from the prokaryotic nucleoid. FEBS Lett 229: 197–202PubMedCrossRefGoogle Scholar
  18. Goransson M, Sonden B, Nilsson P, Dagberg B, Forsman K, Emanuelsson K, Uhlin B-E (1990) Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature (London) 344: 682–685CrossRefGoogle Scholar
  19. Graeme-Cook KA, May G, Bremer E, Higgins CF (1989) Osmotic regulation of porin expression: a role for DNA supercoiling. Mol Microbiol 3: 1287–1294PubMedCrossRefGoogle Scholar
  20. Gualerzi CO, Losso MA, Lammi M, Friedrich K, Pawlik RT, Canonaco MA, Gianfranceschi G, Pingoud A, Pon CL (1986) Proteins from the prokaryotic nucleoid. Structural and functional characterization of the Escherichia coli DNA-binding proteins NS(HU) and H-NS. In: Gualerzi CO, Pon CL (eds) Bacterial chromatin. Springer, Berlin Heidelberg New York, pp 101–134CrossRefGoogle Scholar
  21. Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer E (1988) A physiological role for DNA supercoiling in the osmotic control of gene expression in S. typhimurium and E. coli. Cell 52: 569–584PubMedCrossRefGoogle Scholar
  22. Higgins CF, Hinton JCD, Hulton CSJ, Owen-Hughes T, Pavitt GD, Seirafi A (1990a) Protein Hi: a role for chromatin structure in the regulation of bacterial gene expression and virulence? Mol Microbiol 4: 2007–2012PubMedCrossRefGoogle Scholar
  23. Higgins CF, Dorman CJ, Ni Bhriain N (1990b) Environmental influences on DNA supercoiling: a novel mechanism for the regulation of gene expression. In: Riley M, Drlica K (eds) The bacterial chromosome. ASM, Washington, pp 421–432Google Scholar
  24. Hoover TR, Santero E, Porter S, Kustu S (1990) The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 63: 11–22PubMedCrossRefGoogle Scholar
  25. Hinton JCD, Santos DS, Seirofi A, Hulton CSJ, Pavitt GD, Higgins CF (1992) Expressive and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurum. Mol Microbiol 6: 2327–2337PubMedCrossRefGoogle Scholar
  26. Hsieh L-S, Burger RM, Drlica K (1991) Bacterial DNA supercoiling and ATP/ADP. Changes associated with a transition to anaerobic growth. J Mol Biol 219: 443–450Google Scholar
  27. Hulton CSJ, Seirafi A, Hinton JCD, Sidebotham JM, Waddell L, Pavitt GD, Owen-Hughes T, Spassky A, Buc H, Higgins CF (1990) Histone-like protein H1 ( H-NS ), DNA supercoiling and gene expression in bacteria. Cell 63: 631–642Google Scholar
  28. Kato J, Misra TK, Chakrabarty AM (1990) AIgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 87: 2887–2891PubMedCrossRefGoogle Scholar
  29. Kawula TH, Orndorff PE (1991) Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histone-like protein H-NS. J Bacteriol 173: 4116–4123PubMedGoogle Scholar
  30. La Teana A, Falconi M, Scarlato V, Lammi M, Pon CL (1989) Characterization of the structural genes from the DNA-binding protein H-NS in Enterobacteriaceae. FEBS Lett 244: 34–38PubMedCrossRefGoogle Scholar
  31. Lejeune P, Danchin A (1990) Mutations in the bglY gene increase the frequency of spontaneous deletions in Escherichia coli K-12. Proc Natl Acad Sci USA 87: 360–363PubMedCrossRefGoogle Scholar
  32. Lilley DMJ (1986) Bacterial chromatin. A new twist to an old story. Nature (London) 320: 14–15CrossRefGoogle Scholar
  33. Liu L, Wang J (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84: 7204–7207Google Scholar
  34. Marsh M, Hillyard DR (1990) Nucleotide sequence of has encoding the DNA-binding protein H-NS of Salmonella typhimurium. Nucleic Acids Res 18: 3397PubMedCrossRefGoogle Scholar
  35. Maurelli AT, Sansonetti PJ (1988) Identification of a chromosomal gene controlling temperature regulated expression of Shigella virulence. Proc Natl Acad Sci USA 85: 2820–2824PubMedCrossRefGoogle Scholar
  36. May G, Dersch P, Haardt M, Middendorf A, Bremer E (1990) The osmZ (bglY) gene enclodes the DNA-binding protein H-NS (Hla), a component of the Escherichia coli K12 nucleoid. Mol Gen Genet 224: 81–90PubMedCrossRefGoogle Scholar
  37. McClellan JA, Boublikova P, Palacek E, Lilley DMJ (1990) Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc Natl Acad Sci USA 87: 8373–8377PubMedCrossRefGoogle Scholar
  38. Park CF, Stirling DA, Hulton CSL, Booth IR, Higgins CF, Stewart GSAB (1989) A novel, non-invasive promoter probe vector: cloning of the osmoregulated proU promoter of Escherichia coli K12. Mol Microbiol 3: 1011–1023PubMedCrossRefGoogle Scholar
  39. Pon CL, Calogero RA, Gualerzi CO (1988) Identification, cloning nucleotide sequence and chromosomal map location of hns, the structural gene for Escherichia coli DNA-binding protein H-NS. Mol Gen Genet 212: 199–202PubMedCrossRefGoogle Scholar
  40. Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56: 52 1523Google Scholar
  41. Raibaud 0 (1989) Nucleoprotein structures at positively regulated bacterial promoters: homology with replication origins and some hypotheses on the quaternary structure of the activator proteins in these complexes. Mol Microbiol 3: 455–458CrossRefGoogle Scholar
  42. Reynolds AE, Felton J, Wright A (1981) Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature (London) 293: 625–629CrossRefGoogle Scholar
  43. Reynolds AE, Mahadevan S, Felton J, Wright A (1985) Activation of the cryptic bgl operon: insertion sequences, point mutations and changes in superhelicity affect promoter strength. UCLA Symp Mol Cell Biol New Ser 20: 265–277Google Scholar
  44. Rimsky S, Spassky A (1990) Sequence determinants for HI binding on E. coli lac and gal promoters. Biochemistry 29: 3765–3771PubMedCrossRefGoogle Scholar
  45. Rouviere-Yaniv J, Yaniv M, Germond J-E (1979) E. coli binding protein HU forms nucleosome-like structures with circular double-stranded DNA. Cell 17: 265–274Google Scholar
  46. Schmidt G, Jann B, Jann K, Orskov I, Orskov F (1977) Genetic determinants of the synthesis of the polysaccharide capsular antigen K27(A) of Escherichia coli. J Gen Microbiol 100: 355–361PubMedGoogle Scholar
  47. Seirafi A, Hulton CSJ, Hajibagheri MA, Blight KJ, Higgins CF (1992) Sub-cellular location of the bacterial DNA-binding protein H-NS(H1a). J Cell Sci (Submitted)Google Scholar
  48. Spassky A, Rimsky S, Garreau H, Buc H (1984) Hla, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro. Nucleic Acids Res 12: 5321–5340PubMedCrossRefGoogle Scholar
  49. Spears PA, Schauer D, Orndorff PE (1986) Metastable regulation of type 1 piliation in Escherichia coli and isolation and characterization of a phenotypically stable mutant. J Bacteriol 168: 179–185PubMedGoogle Scholar
  50. Tanaka K-I, Muramatsu S, Yamada H, Mizuno T (1991) Systematic characterization of curved DNA segments randomly cloned from Escherichia coli and their functional significance. Mol Gen Genet 226: 367–376PubMedCrossRefGoogle Scholar
  51. Varshaysky AJ, Nedospasovs A, Bakayev VV, Bakayeva TG, Georgiev G (1977) Histone-like proteins in the purified Escherichia coli deoxyribonucleoprotein. Nucleic Acids Res 4: 2725–2745CrossRefGoogle Scholar
  52. Yamada M, Sasakawa C, Okada N, Makino S-I, Yoshikawa M (1989) Molecular cloning and characterization of chromosomal virulence region kcpA of Shigella flexneri. Mol Microbiol 3: 207–213PubMedCrossRefGoogle Scholar
  53. Yamada H, Muramatsu S, Mizuno T (1990) An Escherichia coli protein that preferentially binds to sharply curved DNA. J Biochem 106: 420–425Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • C. F. Higgins
    • 1
  1. 1.ICRF Laboratories, Institute of Molecular MedicineUniversity of Oxford, John Radcliffe HospitalOxfordUK

Personalised recommendations