Skip to main content

Superhelix Density as an Intensive Thermodynamic Variable

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 6))

Abstract

If a double-stranded DNA molecule is in the form of a ring, the topology of each of the two complemetary strands cannot evolve independently. The parameter which describes this constraint is the linking number (Lk), the number of times one strand links through the closed circle formed by the other strand (for reviews, see Wang 1980; Benham 1985). Lk is an invariant integer for a permanently closed DNA duplex and the family of molecules differing only in their linking number forms the distribution of topoisomers. The reference state for this distribution is the relaxed state where no topological constraint (other than the winding of the two strands as in the corresponding linear molecule) is imposed on the structure. Its linking number, L°k is equal to N/h°, where h° is the average number of base pairs present per helical turn, and N is the number of base pairs. Great care must be taken in defining L°k because the average number of base pairs per turn, h°, largely depends on internal as well as external parameters (ionic strength, temperature, primary sequence of DNA, presence or absence of atypical structures, like Z-DNA, presence of local perturbations, due for example to the intercalation of a drug or to the binding of a protein). As a result L°k will also depend on these variables. Practically, however, L°k can always be defined as the linking number of the covalently closed DNA relaxed under the appropriate conditions (Wang et al. 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amouyal A, Buc H (1987) Topological unwinding of strong and weak promoters by RNA polymerase. J Mol Biol 195: 795–808

    Article  PubMed  CAS  Google Scholar 

  • Bauer WR, Vinograd J (1970) Interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation in SV40 DNA. J Mol Biol 47: 419–435

    Article  PubMed  CAS  Google Scholar 

  • Benham CJ (1985) Theoretical analysis of conformational equilibria in superhelical DNA. Annu Rev Biophys Biophys Chem 14: 23–45

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi CF (1976) Relaxation kinetics. Academic Press, New York

    Google Scholar 

  • Bertrand-Burggraf E, Schnarr M, Lefèvre J-F, Daune M (1984) Effect of superhelicity on the transcription from the tet promoter of pBR322. Abortive initiation and unwinding experiments. Nucleic Acids Res 12: 7741–7752

    Article  PubMed  CAS  Google Scholar 

  • Bertrand-Burggraf E, Dunand J, Fuchs RPP, Lefèvre, J-F (1990) Kinetic studies of the modulation of ada promoter activity by upstream elements. EMBO J 9: 2265–2271

    PubMed  CAS  Google Scholar 

  • Borowiec JA, Gralla JD (1985) Supercoiling response of the lac ps promoter in vitro. J Mol Biol 184: 587–598

    Article  PubMed  CAS  Google Scholar 

  • Borowiec JA, Gralla JD (1987) All three elements of the lac ps promoter mediate its transcriptional response to DNA supercoiling. J Mol Biol 195: 89–97

    Article  PubMed  CAS  Google Scholar 

  • Brahms JG, Dargouge O, Brahms S, Ohara Y, Vagner V (1985) Activation and inhibition of transcription by supercoiling. J Mol Biol 181: 455–465

    Article  PubMed  CAS  Google Scholar 

  • Cantor CR, Schimmel RL (1980) Searching for intermediates: equilibrium studies. In: Biophysical chemistry. III. Conformational equilibria of polypeptides and proteins: reversible folding of proteins. Freeman, San Francisco, pp 1082–1088

    Google Scholar 

  • Davidson N (1972) Effect of DNA length on the free energy of binding of an unwinding ligand to a supercoiled DNA. J Mol Biol 66: 307–309

    Article  PubMed  CAS  Google Scholar 

  • Depew RE, Wang JC (1975) Conformational fluctuations of DNA helix. Proc Natl Acad Sci USA 72: 4275–4279

    Article  PubMed  CAS  Google Scholar 

  • Douc-Rasy S, Kolb A, Prunell A (1989) Protein-induced unwinding of DNA: measurement by gel electrophoresis of complexes with DNA minicircles. Application to restriction endonuclease EcoRI, catabolite gene activator protein and lac repressor. Nucleic Acids Res 17: 5173–5188

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich R, Larousse A, Jacquet M-A, Marin M, Reiss C (1985) In vitro transcription intiation from three different E. coli promoters. Effect of supercoiling. Eur J Biochem 148: 293–298

    Article  PubMed  CAS  Google Scholar 

  • Eigen M, De Maeyer L (1983) Relaxation methods. Tech Org Chem 8: 895–920

    Google Scholar 

  • Fersht A (1985) Enzyme structure and mechanism 2nd edn. WH Freeman, New York, pp 47–50

    Google Scholar 

  • Figueroa N, Bossi L (1988) Transcription induces gyration of the DNA template in E. coli. Proc Natl Acad Sci USA 85: 9416–9420

    Article  PubMed  CAS  Google Scholar 

  • Frank-Kamenetskii MD, Lukashin AV, Anshelevich VV, Vologodskii AV (1985) Torsional and bending rigidity of the double helix form data on small DNA rings. J Biomol Struct Dyn 2: 1005–1012

    PubMed  CAS  Google Scholar 

  • Gamper HB, Hearst JE (1982) A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell 29: 81–90

    Article  PubMed  CAS  Google Scholar 

  • Germond J-E, Rouvière-Yaniv J, Yaniv M, Brutlag D (1979) Nicking-closing enzyme assembles nucleosome-like structures in vitro. Proc Natl Acad Sci USA 76:3779–3783

    Article  PubMed  CAS  Google Scholar 

  • Giaever GN, Wang JC (1988) Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 55: 849–856

    Article  PubMed  CAS  Google Scholar 

  • Gierer A (1966) Model for DNA and protein interactions and the function of the operator. Nature (London) 212: 1480–1481

    Article  CAS  Google Scholar 

  • Goulet I, Zivanovic Y, Prunell A (1987) Helical repeat of DNA in solution. The V curve method. Nucleic Acids Res 15: 2803–2821

    Article  PubMed  CAS  Google Scholar 

  • Goulet I, Zivanovic Y, Prunell A, Revet B (1988) Chromatin reconstitution on small DNA ring. I. J Mol Biol 200: 253–266

    Article  CAS  Google Scholar 

  • Hawley DK, McClure WR (1983) Compilation and analysis of E. coli promoter DNA sequences. Nucleic Acids Res 11: 2237–2255

    Article  PubMed  CAS  Google Scholar 

  • Horowitz DS, Wang JC (1984) Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J Mol Biol 173: 75–91

    Article  PubMed  CAS  Google Scholar 

  • Hsieh T-S, Wang JC (1975) Thermodynamic properties of superhelical DNAs. Biochemistry 14: 527–535

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Kim S-H (1983) Direct measurement of DNA unwinding angle in specific interaction between lac operator and repressor. Cold Spring Harbor Symp Quant Biol 67: 451–454

    Google Scholar 

  • Kim R, Modrich P, Kim S-H (1984) “Interactive” recognition in EcoRI restriction enzyme-DNA complex. Nucleic Acids Res 12:7285–7292

    Article  PubMed  CAS  Google Scholar 

  • Kolb A, Buc H (1982) Is DNA unwound by the cyclic AMP receptor protein? Nucleic Acids Res 10: 473–485

    Article  PubMed  CAS  Google Scholar 

  • Krämer H, Amouyal M, Nordheim A, Müller-Hill B (1988) DNA supercoiling changes the spacing requirement of two lac operators for DNA loop formation with lac repressor. EMBO J 7: 547–556

    PubMed  Google Scholar 

  • Laundon CH, Griffith JD (1988) Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell 52: 545–549

    Article  PubMed  CAS  Google Scholar 

  • Lilley D (1983) Dynamic, sequence-dependent DNA structures as exemplified by cruciform extrusion from inverted repeats in negatively supercoiled DNA. Cold Spring Harbor Symp Quant Biol 67: 101–111

    Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84: 7024–7027

    Article  PubMed  CAS  Google Scholar 

  • Meiklejohn AL, Gralla JD (1989) Activation of the lac promoter and its variants. Synergistic effects of catabolite activator protein and supercoiling in vitro. J Mol Biol 207: 661–673

    Article  PubMed  CAS  Google Scholar 

  • Nordheim A, Meese K (1988) Topoisomer gel retardation: detection of anti-z-DNA antibodies bound to Z-DNA within supercoiled DNA minicircles. Nucleic Acids Res 16: 21–37

    Article  PubMed  CAS  Google Scholar 

  • Ostrander EA, Benedetti P, Wang JC (1990) Template supercoiling by a chimera of yeast GALA protein and phage T7 RNA polymerase. Science 249: 1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Peck LJ, Wang JC, Nordheim A, Rich A (1986) Rate of B to Z structural transition of supercoiled DNA. J Mol Biol 190: 125–127

    Article  PubMed  CAS  Google Scholar 

  • Pohl FM (1986) Dynamics of the B-to-Z transition in supercoiled DNA. Proc Natl Acad Sci USA 83: 4983–4987

    Article  PubMed  CAS  Google Scholar 

  • Pulleyblank DE, Shure M, Tang D, Vinograd J, Vosberg HP (1975) Action of nicking-closing enzyme on supercoiled and non-supercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers. Proc Natl Acad Sci USA 72:4280–4284

    Article  PubMed  CAS  Google Scholar 

  • Privalov PL (1979) Stability of protein. Small globular proteins. Adv Protein Chem 33: 167–196

    Article  PubMed  CAS  Google Scholar 

  • Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56: 521–523

    Article  PubMed  CAS  Google Scholar 

  • Saucier JM, Wang JC (1972) Angular alteration of the DNA helix by E. coli RNA polymerase. Nature New Biol 239: 167–170

    Article  PubMed  CAS  Google Scholar 

  • Shore D, Baldwin RL (1983) Energetics of DNA twisting. I. Relation between twist and cyclization probability. J Mol Biol 170: 957–1007

    Article  PubMed  CAS  Google Scholar 

  • Vinograd J, Lebowitz J, Watson, R (1968) Early and late helix-coil transitions in closed circular DNA. The number of superhelical turns in polyoma DNA. J Mol Biol 33: 173–197

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (1980) Superhelical DNA. Trends Biochem Sci 5: 219–221

    Article  CAS  Google Scholar 

  • Wang JC, Barkley MD, Bourgeois S (1974) Measurements of unwinding of lac operator by repressor. Nature (London) 251: 247–249

    Article  CAS  Google Scholar 

  • Wang JC, Jacobsen JH, Saucier JM (1977) Physicochemical studies on interactions between DNA and RNA polymerase. Unwinding of the DNA helix by E. coli RNA polymerase. Nucleic Acids Res 4: 1225–1241

    Article  PubMed  CAS  Google Scholar 

  • Wang JC, Peck LJ, Becherer K (1983) DNA supercoiling and its effects on DNA structure and function. Cold Spring Harbor Symp Quant Biol 67: 85–91

    Google Scholar 

  • Wolters M, Wittig B (1989) Construction of a 42 base pair double stranded DNA microcircle. Nucleic Acids Res 17: 5163–5172

    Article  PubMed  CAS  Google Scholar 

  • Wu H-Y, Shyy S, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53: 433–440

    Article  PubMed  CAS  Google Scholar 

  • Zivanovic Y, Goulet I, Prunell A (1986) Properties of supercoiled DNA in gel electrophoresis. The V-like dependence of mobility on topological constraint. DNA-matrix interactions. J Mol Biol 192: 645–660

    Article  PubMed  CAS  Google Scholar 

  • Zivanovic Y, Goulet I, Revet B, Le Bret M, Prunell AJ (1988) Chromatin reconstitution on small DNA rings. II. DNA supercoiling on the nucleosome. J Mol Biol 200: 267–285

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buc, H., Amouyal, M. (1992). Superhelix Density as an Intensive Thermodynamic Variable. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77356-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77356-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77358-7

  • Online ISBN: 978-3-642-77356-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics