Skip to main content

Aminoacyl-tRNA Synthetases: Partition into two Classes

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 6))

Abstract

Aminoacyl-tRNA synthetases (aaRS) constitute a family of enzymes that catalyze the specific attachment of one amino acid (aa) to its cognate tRNA in what is a key step in the translation of the genetic information during protein biosynthesis. This enzymatic reaction requires ATP and can be decomposed in two steps:

$$\begin{gathered} \operatorname{aa} + ATP \to aa - AMP + PPi \hfill \\ \operatorname{aa} - AMP + tRNA \to aa - tRNA + AMP \hfill \\ \end{gathered} $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anselme J, Haertlein M (1989) AsnRS from E. coli has significant sequence homology with yeast AspRS. Gene 84: 481–485

    Article  PubMed  CAS  Google Scholar 

  • Argos P (1987) Analysis of sequence-similar pentapeptides in unrelated protein tertiary structures. J Mol Biol 197: 331–348

    Article  PubMed  CAS  Google Scholar 

  • Blow DM, Bhat TN, Metcalfe A, Risler JL, Brunie S, Zelwer C (1983) Structural homology in the amino-terminal domains of two aaRS. J Mol Biol 171: 571–576

    Article  PubMed  CAS  Google Scholar 

  • Brick P, Blow DM (1987) Crystal structure of a deletion mutant of a TyrRS compexed with tyrosine. J Mol Biol 194: 287–297

    Article  PubMed  CAS  Google Scholar 

  • Brick P, Bhat TN, Blow DM (1988) Structure of TyrRS refined at 2.3 A resolution: interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol 208: 83–98

    Article  Google Scholar 

  • Brunie S, Zelwer C, Risler J-L (1990) Crystallographic studies at 2.5 A resolution of the interaction of MetRS from E. coli with ATP. J Mol Biol 216: 411–424

    Article  PubMed  CAS  Google Scholar 

  • Burbaum JJ, Starzyk RM, Schimmel P (1990) Understanding structural relationships in proteins of unsolved three-dimensional structures. Proteins 7: 99–111

    Article  PubMed  CAS  Google Scholar 

  • Cech TR (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236: 1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Chernaya MM, Korolev SV, Reshetnikova LS, Safro MG (1987) Preliminary crystallographic study of PheRS from Th. thermophilus HB8. J Mol Biol 198: 557–559

    Article  Google Scholar 

  • Chothia C (1974) Nature of accessible and buried residues in proteins. J Mol Biol 105: 1–14

    Article  Google Scholar 

  • Cusack S, Berthet-Colominas C, Haertlein M, Nassar N, Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of E. coli SerRS at 2.5 A. Nature (London) 347: 249–255

    Article  CAS  Google Scholar 

  • Cusack S, Haertlein M, Leberman R (1991) Sequence, structural and evolutionary relationships between class II aaRS. Nucleic Acids Res 19: 3489–3498

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO, Barker WC, Hunt LT (1983) Establishing homologies in protein sequences. Methods Enzymol 91: 524–545

    Article  PubMed  CAS  Google Scholar 

  • Dock-Bregeon AC, Garcia A, Giege R, Moras D (1990) The contacts of yeast tRNAser with SerRS studied by footprinting experiments. Eur J Biochem 188: 283–290

    Article  PubMed  CAS  Google Scholar 

  • Eriani G, Dirheimer G, Gangloff J (1990a) Primary structure of E. coli AspRS. Nucleic Acids Res 18: 7109–7117

    Article  PubMed  CAS  Google Scholar 

  • Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990b) Partition of aaRS into two classes on the basis of two mutually exclusive sets of sequence motifs. Nature (London) 347: 203–206

    Article  CAS  Google Scholar 

  • Eriani G, Dirheimer G, Gangloff J (1991) CysRS: determination of the last E. coli aaRS primary structure. Nucleic Acids Res 19: 265–269

    Article  PubMed  CAS  Google Scholar 

  • Ferber S, Ciechanover A (1987) A role of tRNAArg in protein degradation by the ubiquitin pathway. Nature (London) 326: 808–811

    Article  CAS  Google Scholar 

  • Fehrst AR, Kaethner MM (1976) Enzyme hyperspecificity: rejection of threonine by Va1RS by misacylation and hydrolytic editing. Biochemistry 15: 3342–3346

    Article  Google Scholar 

  • Freist W, Sternbach H, Cramer F (1981) Survey on substrate specificity with regard to ATP analogs of aaRS from E. coli and baker’s yeast. Hoppe-Seyler’s Z Physiol Chem 362: 1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Gampel A, Tzagoloff A (1989) Homology of aspartyl and Lysyl-tRNA synthetases. Proc Natl Acad Sci USA 86: 6023–6027

    Article  PubMed  CAS  Google Scholar 

  • Gatti DL, Tzagoloff A (1991) Structure and evolution of a group of related aaRS. J Mol Biol 218: 557–568

    Article  PubMed  CAS  Google Scholar 

  • Gribskov M, MacLachlan AD, Eisenberg D (1987) Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci USA 84: 4355–4358

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Hurst LD (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33: 412–417

    Article  PubMed  CAS  Google Scholar 

  • Hecht SM (1979) 2’OH vs 3’OH specificity in tRNA aminoacylation. In: Schimmel P, Soll D, Abelson JN (eds) tRNA structure, properties and recognition. Cold Spring Harbor Laboratory, NY, pp 345–360

    Google Scholar 

  • Herbert C, Labouesse M, Dujardin G, Slonimski PP (1988) The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial LeuRS and are involved in mRNA splicing. EMBO J 7: 473–483

    PubMed  CAS  Google Scholar 

  • Hou Y-M, Shiba K, Mottes C, Schimmel P (1991) Sequence determination and modeling of structural motifs for the smallest monomeric aaRS. Proc Natl Acad Sci USA 88: 976–980

    Article  PubMed  CAS  Google Scholar 

  • Hountoudji C, Dessen P, Blanquet S (1986) Sequence similarities among the family of aaRS. Biochimie 68: 1071–1078

    Article  Google Scholar 

  • Igloi GL, von der Haar F, Cramer F (1978). AaRS from yeast: generality of chemical proofreading in the prevention of misaminoacylation of tRNA. Biochemistry 17: 3459–3468

    Article  PubMed  CAS  Google Scholar 

  • Jacobo-Molina A, Arnold E (1991) HIV reverse transcriptase structure-function relationship. Biochemistry 30: 351–6361

    Article  Google Scholar 

  • Jasin M, Regan L, Schimmel P (1983) Modular arrangement of functional domains along the sequence of AIaRS. Nature (London) 306: 441–447

    Article  CAS  Google Scholar 

  • Kittle JD, Mohr G, Gianelos JA, Wang H, Lambowitz AM (1991) The Neurospora mitochondria) TyrRS is sufficient for group I intron splicing in vitro and uses the carboxy-terminal tRNA-binding domain along with other regions. Genes Dev 5: 1009–1021

    Article  PubMed  CAS  Google Scholar 

  • Lacey JC, Staves MP, Thomas RD (1991) Ribonucleic acids may be catalysts for the preferential synthesis of L-amino acid peptides: a minireview. J Mol Evol 31: 244–248

    Article  Google Scholar 

  • Lambowitz AM, Perlman PS (1990) Involvement of aaRS and other proteins in group I and group II intron splicing. TIBS 15: 440–444

    PubMed  Google Scholar 

  • Landes C, Perona JJ, Brunie S, Rould MA, Zelwer C, Steitz TA, Risler JL (1991) Primary sequence and tertiary structure similarities as evidence for a dinucleotide binding fold in class I aaRS. (submitted)

    Google Scholar 

  • Lee CC, Craigen WJ, Muzny DM, Harlow E, Caskey CT (1990) Cloning and expression of a mammalian peptide chain release factor with sequence similarity to TrpRS. Proc Natl Acad Sci USA 87: 3508–3512

    Article  PubMed  CAS  Google Scholar 

  • Leveque F, Plateau P, Dessen P, Blanquet S (1990) Homology of LysS and LysU, the two E. coli genes encoding distinct LysRS species. Nucleic Acids Res 18: 305–312

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162–1165

    Article  CAS  Google Scholar 

  • McClain WH, Foss K, Jenkins RA, Schneider J (1991) Rapid determination of nucleotides that define tRNAGly iedtity. Proc Natl Acad Sci USA 88: 6147–6151

    Article  PubMed  CAS  Google Scholar 

  • Blow DM, Bhat TN, Metcalfe A, Risler JL, Brunie S, Zelwer C (1983) Structural homology in the amino-terminal domains of two aaRS. J Mol Biol 171: 571–576

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162–1165

    Article  CAS  Google Scholar 

  • Perona JJ, Rould MA, Steitz TA, Risler JL, Zelwer C, Brunie S (1991) Structural similarities on Gln-and MetRSs suggest a common overall orientation of tRNA binding. Proc Natl Acad Sci USA 88: 2903–2907

    Article  PubMed  CAS  Google Scholar 

  • Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of a nucleotide binding domain. Nature (London) 250: 194–199

    Article  CAS  Google Scholar 

  • Rould MA, Perona JJ, Soll D, Steitz TA (1989) Structure of the E. coli G1nRS-tRNAGln complex. Science 246: 1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Rould MA, Perona JJ, Steitz TA S (1991) Structural basis of anticodon loop recognition by GInRS. Nature (London) 352: 213–218

    Article  CAS  Google Scholar 

  • Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry J-C, Moras D (1991) Class II aaRS: crystal structure of yeast AspRS complexed with tRNA`’sP. Science 252: 1682–1689

    Article  PubMed  CAS  Google Scholar 

  • Sanni A, Walter P, Boulanger Y, Ebel JP, Fasiolo F (1991) Evolution of aaRS quaternary structure and activity: S. cerevisiae mitochondrial PheRS. Proc Natl Acad Sci USA 88: 8387–8391

    Article  PubMed  CAS  Google Scholar 

  • Schatz D, Leberman R, Eckstein F (1991) Interaction of E. coli tRNAser with its cognate aaRS as determined by footprinting with phosphorothioate-containing tRNA transcripts. Proc Natl Acad Sci USA 88: 6132–6136

    Article  PubMed  CAS  Google Scholar 

  • Schimmel P (1987) AaRS: general scheme of structure-function relationships in the polypeptides and tRNA recognition. Annu Rev Biochem 56: 125–158

    Article  PubMed  CAS  Google Scholar 

  • Schimmel P, Söll D (1979) AaRS: general features and tRNA recognition. Annu Rev Biochem 48: 601–648

    Article  PubMed  CAS  Google Scholar 

  • Schoen A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Soll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast tRNAGlu. Nature (London) 332: 281–284

    Article  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162–1165

    Article  CAS  Google Scholar 

  • Von der Haar F, Cramer F (1976) Hydrolytic action of aaRS from baker’s yeast: chemical proofreading preventing acylation of tRNALeu with misactivated Valine. Biochemistry 26: 4131–4138

    Article  Google Scholar 

  • Webster TA, Gibson BW, Keng T, Biemann K, Schimmel P (1983) Primary structure of E. coli GIyRS. J Biol Chem 258: 10637–10641

    PubMed  CAS  Google Scholar 

  • Webster TA, Tsai H, Kula M, Mackie G, Schimmel P (1984) Specific homology and three-dimensional structure of an aaRS. Science 226: 1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Wek RC, Jackson BM, Hinnenbusch AG (1989) Juxtaposition of domains homologous to protein kinases and HisRS in GCN2 protein suggests a mechanism for coupling gene expression to amino acid availability. Proc Natl Acad Sci USA 86: 4579–4583

    Article  PubMed  CAS  Google Scholar 

  • Williamson RM, Oxender DL (1990) Sequence and structural similarities between the leucine-specific binding protein and LeuRS from E. coli. Proc Natl Acad Sci USA 87: 4561–4565

    Article  PubMed  CAS  Google Scholar 

  • Wong JT-F (1975) A coevolution theory of the genetic code. Proc Natl Acad Sci USA 72: 1909–1912

    Article  PubMed  CAS  Google Scholar 

  • Yarus M (1988) A specific amino acid binding site composed of RNA. Science 240: 1751–1758

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delarue, M., Moras, D. (1992). Aminoacyl-tRNA Synthetases: Partition into two Classes. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77356-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77356-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77358-7

  • Online ISBN: 978-3-642-77356-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics