Skip to main content

Genetic Studies of Pre-mRNA Splicing in Yeast

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 6))

Abstract

Nuclear pre-mRNA splicing involves the removal from primary transcripts of internal, usually noncoding, intron sequences and joining of the protein-coding exons to produce mature mRNA. Although the majority of eukaryotic nuclear protein-encoding genes contain introns, in the yeast Saccharomyces cerevisiae there are relatively few intron-containing genes, and most of these have only a single intron near the 5′ end. Most introns in this fast-growing, simple eukaryote have no apparent function, and many have probably been eliminated by selective pressures (Fink 1987). However, as many of the intron-containing genes in yeast encode essential functions, pre-mRNA splicing is necessary for cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abovich N, Legrain P, Rosbash M (1990) The yeast PRP6 gene encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein, and the PRP9 gene encodes a protein required for U2 snRNP binding. Mol Cell Biol 10: 6417–6425

    PubMed  CAS  Google Scholar 

  • Anderson GJ, Bach M, Lührmann R, Beggs JD (1989) Conservation between yeast and man of a protein associated with U5 small nuclear ribonucleoprotein. Nature (London) 342: 819–821

    Article  CAS  Google Scholar 

  • Banroques J, Abelson JN (1989) PRP4: a protein of the yeast U4/U6 small nuclear ribonucleoprotein particle. Mol Cell Biol 9: 3710–3719

    PubMed  CAS  Google Scholar 

  • Beggs JD, van den Berg J, Van Ooyen A, Weissmann C (1980) Abnormal expression of chromosomal rabbit ß-globin gene in Saccharomyces cerevisiae. Nature (London) 283: 835–840

    Article  CAS  Google Scholar 

  • Boeke JD, Trueheart J, Natsoulis G, Fink GR (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Meth Enzymol 154: 164–175

    Google Scholar 

  • Brow DA, Guthrie C (1989) Splicing a spliceosomal RNA. Nature (London) 337: 14–15

    Article  CAS  Google Scholar 

  • Brown JWS, Feix G, Frendewey D (1986) Accurate in vitro splicing of two pre-mRNA plant introns in a HeLa cell nuclear extract. EMBO J 5: 2749–2758

    PubMed  CAS  Google Scholar 

  • Burgess S, Couto JR, Guthrie C (1990) A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing. Cell 60: 705–717

    Article  PubMed  CAS  Google Scholar 

  • Chapman KB, Boeke JD (1991) Isolation and characterisation of the gene encoding yeast debranching enzyme. Cell 65: 483–492

    Article  PubMed  CAS  Google Scholar 

  • Company M, Arenas J, Abelson J (1991) Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature (London) 349: 487–493

    Article  CAS  Google Scholar 

  • Couto JR, Tamm J, Parker R, Guthrie C (1987) A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation. Genes Dev 1: 445–455

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Abelson J (1990) Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science 250: 404–409

    Article  PubMed  CAS  Google Scholar 

  • Fink GR (1987) Pseudogenes in yeast? Cell 49: 5–6

    Article  PubMed  CAS  Google Scholar 

  • Guthrie C (1986) Finding functions for small nuclear RNAs in yeast. TIBS 11: 430–434

    CAS  Google Scholar 

  • Guthrie C (1988) Genetic analysis of yeast snRNAs. In: Birnstiel M (ed) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer, Berlin Heidelberg New York, pp 196–211

    Chapter  Google Scholar 

  • Guthrie C (1991) mRNA splicing in yeast: clues to why the ribosome is a ribonuceopreotein. Science 253:157–163

    Article  Google Scholar 

  • Guthrie C, Patterson B (1988) Spliceosomal snRNAs. Annu Rev Genet 22: 387–419

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, McLaughlin CS, Warner JR (1970) Identification of ten genes that control ribosome formation in yeast. Mol Gen Genet 109: 42–56

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature (London) 329: 219–222

    Article  CAS  Google Scholar 

  • Jamieson DJ, Beggs JD (1991) A suppressor of yeast spp81lded1 mutations encodes a very similar putative ATP-dependent RNA helicase. Mol Microbiol 5 (4): 805–812

    Article  PubMed  CAS  Google Scholar 

  • Jamieson DJ, Rahe B, Pringle J, Beggs JD (1991) A suppressor of a yeast splicing mutation (prp8–1) encodes a putative ATP-dependent RNA helicase. Nature (London) 349: 715–717

    Article  CAS  Google Scholar 

  • Jones MH, Guthrie C (1990) Unexpected flexibility in an evolutionarily conserved protein-RNA interaction: genetic analysis of the Sm binding site. EMBO J 9: 2555–2561

    PubMed  CAS  Google Scholar 

  • King DS, Beggs JD (1990) Interactions of PRP2 protein with pre-mRNA splicing com-plexes in Saccharomyces cerevisiae. Nucleic Acids Res 18: 6559–6564

    Article  PubMed  CAS  Google Scholar 

  • Langford C, Nellen W, Niessing J, Gallwitz D (1983) Yeast is unable to excise foreign intervening sequences from hybrid gene transcripts. Proc Natl Acad Sci USA 80: 1496–1500

    Article  PubMed  CAS  Google Scholar 

  • Last RL, Maddock JR, Woolford JL Jr (1987) Evidence for related functions of the RNA genes of Saccharomyces cerevisiae. Genetics 117: 619–631

    PubMed  CAS  Google Scholar 

  • Lin R-J, Newman AJ, Cheng S-C, Abelson J (1985) Yeast mRNA splicing in vitro. J Biol Chem 260: 14780–14792

    PubMed  CAS  Google Scholar 

  • Lin R-J, Lustig AJ, Abelson J (1987) Splicing of yeast nuclear pre-mRNA in vitro requires a functional 40S spliceosome and several extrinsic factors. Genes Dev 1: 7–18

    Article  PubMed  CAS  Google Scholar 

  • Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP (1989) Birth of the D-E-A-D box. Nature (London) 337: 121–122

    Article  CAS  Google Scholar 

  • Lossky M, Anderson GJ, Jackson SP, Beggs JD (1987) Identification of a yeast snRNP protein and detection of snRNP-snRNP interactions. Cell 51: 1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Lustig AJ, Lin R-J, Abelson J (1986) The yeast RNA gene products are essential for mRNA splicing in vitro. Cell 47: 953–963

    Article  PubMed  CAS  Google Scholar 

  • Madhani HD, Bordonne R, Guthrie C (1990) Multiple roles for U6 snRNA in the splicing pathway. Genes Dev 4: 2264–2277

    Article  PubMed  CAS  Google Scholar 

  • Newman A, Norman C (1991) Mutations in yeast U5 snRNA alter the specificity of 5’ splice site cleavage. Cell 65: 115–123

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Siliciano PG, Guthrie C (1987) Recognition of the TACTAAC box during mRNA splicing in yeast involved base pairing to the U2-like snRNA. Cell 49: 229–239

    Article  PubMed  CAS  Google Scholar 

  • Patterson B, Guthrie C (1987) An essential yeast snRNA with a U5-like domain is required for splicing in vivo. Cell 49: 613–624

    Article  PubMed  CAS  Google Scholar 

  • Petersen-Bjorn S, Soltyk A, Beggs JD, Friesen JD (1989) PRP4 (RNA4) from Saccharomyces cerevisiae: its gene product is associated with the U4/U6 small nuclear ribonucleoprotein particle. Mol Cell Biol 9: 3698–3709

    Google Scholar 

  • Potashkin J, Li R, Frendewey D (1989) Pre-mRNA splicing mutants of Schizo-saccharomyces pombe. EMBO J 8: 551–559

    PubMed  CAS  Google Scholar 

  • Powers S, Gonzales E, Christensen T, Cubert J, Broek D (1991) Functional cloning of BUDS, a CDC25-related gene fron S. cerevisiae that can suppress a dominant-negative RAS2 mutant. Cell 65: 1225–1231

    Article  PubMed  CAS  Google Scholar 

  • Rosbash M, Seraphin B (1991) Who’s on first? The U1 snRNP-5’ splice site interaction and splicing. TIBS 16: 187–190

    PubMed  CAS  Google Scholar 

  • Rosbash M, Harris PKW, Woolford JL, Teem JL (1981) The effect of temperature-sensitive RNA mutants on the transcription products from cloned ribosomal protein genes of yeast. Cell 24: 679–686

    Article  PubMed  CAS  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Meth Enzymol 101: 202–211

    Article  PubMed  CAS  Google Scholar 

  • Ruby S, Abelson J (1991) Pre-mRNA splicing in yeast. TIG 7: 79–85

    PubMed  CAS  Google Scholar 

  • Ruskin B, Pickielny CW, Rosbash M, Green MR (1986) Alternative branchpoints are selected during splicing of a yeast pre-mRNA in mammalian and yeast extracts. Proc Natl Acad Sci USA 83: 2022–2026

    Article  PubMed  CAS  Google Scholar 

  • Schwer B, Guthrie C (1991) PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature (London) 349: 494–499

    Article  CAS  Google Scholar 

  • Seraphin B, Rosbash M (1989) Identification of functional Ul snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell 59: 349–358

    Article  PubMed  CAS  Google Scholar 

  • Seraphin B, Kretzner L, Rosbash M (1988) A Ul snRNA: pre-mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5’ cleavage site. EMBO J 7: 2533–2538

    PubMed  CAS  Google Scholar 

  • Seraphin B, Abovich N, Rosbash M (1991) Genetic depletion indicates a late role for U5 snRNP during in vitro spliceosome assembly. Nucleic Acids Res 19: 3857–3860

    Article  PubMed  CAS  Google Scholar 

  • Shannon KW, Guthrie C (1991) Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs. Genes Dev 5: 773–785

    Article  PubMed  CAS  Google Scholar 

  • Siliciano PG, Guthrie C (1988) 5’ Splice site selection in yeast: genetic alterations in base-pairing with Ul reveal additional requirements. Genes Dev 2: 1258–1267

    Google Scholar 

  • Smith V, Barrell BG (1991) Cloning of a yeast Ul snRNP 7OK protein homologue: functional conservation of an RNA-binding domain between human and yeast. EMBO J 10: 2627–2634

    PubMed  CAS  Google Scholar 

  • Strauss EJ, Guthrie C (1991) A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Genes Dev 5: 629–641

    Article  PubMed  CAS  Google Scholar 

  • Vijayraghavan U, Abelson J (1989) Pre-mRNA splicing in yeast. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol 3. Springer, Berlin Heidelberg New York, pp 197–215

    Google Scholar 

  • Vijayraghavan U, Abelson J (1990) PRP18, a protein required for the second reaction in pre-mRNA splicing. Mol Cell Biol 10: 324–332

    PubMed  CAS  Google Scholar 

  • Vijayraghavan U, Company M, Abelson J (1989) Isolation and characterisation of premRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev 3: 1206–1216

    Article  PubMed  CAS  Google Scholar 

  • Warner JR, Gorenstein C (1977) The synthesis of eukaryotic ribosomal proteins in vitro. Cell 11: 201–212

    Article  PubMed  CAS  Google Scholar 

  • Wassarmann DA, Steitz JA (1991) Alive with DEAD proteins. Nature (London) 349: 463–464

    Article  Google Scholar 

  • Watts FZ, Castle C, Beggs JD (1983) Aberrant splicing of Drosophila alcohol dehydrogenase transcripts in Saccharomyces cerevisiae. EMBO J 2: 2085–2091

    PubMed  CAS  Google Scholar 

  • Woolford JL (1989) Nuclear pre-mRNA splicing in yeast. Yeast 5: 439–458

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beggs, J.D., Plumpton, M. (1992). Genetic Studies of Pre-mRNA Splicing in Yeast. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77356-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77356-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77358-7

  • Online ISBN: 978-3-642-77356-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics