Skip to main content

Polymerase Selectivity and the Promoters of U snRNA Genes

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 6))

Abstract

The U small nuclear RNAs (snRNAs) form a functionally conserved family of RNAs found in eukaryotic cells. A subset of these RNAs, the spliceosomal snRNAs, function in the removal of introns from messenger RNA precursors. In most eukaryotes this group of snRNAs are U1, U2, U4, U5 and U6 but in trypanosomes, which produce mature mRNAs by transrather than cis-splicing, no homologues of U1 or U5 have been found (see Guthrie and Patterson 1988; Lamond et al. 1990 for reviews). Another ubiquitous member of the U snRNA family which will be discussed here is U3. U3 is found in the nucleolus rather than the nucleoplasm and is involved in the processing of ribosomal RNA precursors (Kass et al. 1990). The topic of this review will not, however, be the function of these RNAs, what will interest us is their transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baer M, Nilsen TW, Costigan C, Altman S (1990) Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P. Nucleic Acids Res 18: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Bally M, Hughes J, Cesareni G (1988) SnR30 a new relatively abundant essential small nuclear RNA in Saccharomyces cerevisiae. Nucleic Acid Res 16: 5291–5303

    Article  PubMed  CAS  Google Scholar 

  • Brow DA, Guthrie C (1990) Transcription of a yeast U6 snRNA gene requires a polymerase III promoter element in a novel position. Genes Dev 4: 1345–1356

    Article  PubMed  CAS  Google Scholar 

  • Carbon P, Krol A (1991) Transcription of the Xenopus laevis selenocysteine tRNA gene: a system that combines an internal B box and upstream elements also found in U6 snRNA genes. EMBO J 10: 599–606

    PubMed  CAS  Google Scholar 

  • Ciliberto G, Palla F, Tebb G, Mattaj IW, Philipson L (1987) Properties of a Ul RNA enhancer-like sequence. Nucleic Acids Res 15: 2403–2416

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg JE, Lund E (1988) The genes and transcription of the major small nuclear RNAs. In: Birnstiel ML (ed) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer, Berlin Heidelberg New York, pp 38–70

    Chapter  Google Scholar 

  • Dahlberg JE, Schenborn ET (1988) The human U1 snRNA promoter and enhancer do not direct sythesis of messenger RNA. Nucleic Acids Res 16: 5827–5840

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, McPheeters DS, Abelson J (1989) In vitro assembly of yeast U6 snRNP: a functional assay. Genes Dev 3: 2137–2150

    Article  PubMed  CAS  Google Scholar 

  • Frendewey D, Barta I, Gillespie M, Potashkin J (1990) Shizosaccharomyces U6 genes have a sequence within their introns that matches the B box consensus of tRNA internal promoters. Nucleic Acids Res 18:2025–2032

    Article  PubMed  CAS  Google Scholar 

  • Geiduschek E, Tocchini-Valentini G (1988) Transcription by RNA polymerase III. Annu Rev Biochem 57: 873–914

    Article  PubMed  CAS  Google Scholar 

  • Goodall GJ, Kiss T, Filipowicz W (1991) Nuclear RNA splicing and small nuclear RNAs and their genes in higher plants. In: Miflin BJ (ed) Oxford surveys of plant molecular and cellular biology. Vol 7 Univ Press, Oxford. Oxford pp 255–296

    Google Scholar 

  • Gunderson SI, Knuth MW, Burgess RR (1990) The human Ul snRNA promoter correctly initiates transcription in vitro and is activated by PSE1. Genes Dev 4: 2048–2060

    Article  PubMed  CAS  Google Scholar 

  • Guthrie C, Patterson B (1988) Spliceosomal snRNAs. Annu Rev Genet 22:387–419

    Article  PubMed  CAS  Google Scholar 

  • Hamm J, Mattaj IW (1990) Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63: 109–118

    Article  PubMed  CAS  Google Scholar 

  • Kadonaga JT (1990) Gene transcription: basal and regulated transcription by RNA polmerase II. Curr Opinion Cell Biol 2: 496–501

    Article  PubMed  CAS  Google Scholar 

  • Kass S, Tyc K, Steitz JA, Sollner-Webb B (1990) The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60: 897–908

    Article  PubMed  CAS  Google Scholar 

  • Kelekar A, Keene JD (1990) Downregulation of RNA polymerase III transcription of the hY3 gene in vitro. Mol Biol Rep 14: 173–174

    Article  PubMed  CAS  Google Scholar 

  • Kiss T, Marshallsay C, Filipowicz W (1991) Alteration of the RNA polymerase specificity of U3 snRNA genes during evolution and in vitro. Cell 65: 517–526

    Article  PubMed  CAS  Google Scholar 

  • Kleinert H, Bredow S, Benecke BJ (1990) Expression of a human 7S K RNA gene in vivo requires a novel pol III upstream element EMBO J 9: 711–718

    CAS  Google Scholar 

  • Knuth MW, Gunderson SI, Thompson NE, Strasheim LA, Burgess RR (1990) Purification and characterization of proximal sequence element-binding protein 1, a transcription activating protein related to Ku and TREF that binds the proximal sequence element of the human Ul promoter. J Biol Chem 265: 17911–17920

    PubMed  CAS  Google Scholar 

  • Lamond AI, Barabino S, Blencowe BJ (1990) The mammalian pre-mRNA splicing apparatus. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol 4. Springer, Berlin Heidelberg New York, pp 243–257

    Google Scholar 

  • Lescure A, Carbon P, Krol A (1991) The different positioning of the proximal sequence element in the Xenopus RNA polymerase II and III snRNA promoters is a key determinant which confers RNA polymerase III specificity. Nucleic Acids Res 19: 435–441

    Article  PubMed  CAS  Google Scholar 

  • Lobo S, Hernandez N (1989) A 7-bp mutation converts a human RNA polymerase II snRNA promoter into an RNA polmerase II promoter. Cell 58: 55–67

    Article  PubMed  CAS  Google Scholar 

  • Lobo SM, Ifill S, Hernandez N (1990) Cis-acting elements required for RNA polymerase II and III transcription in the human U2 and U6 snRNA promoters. Nucleic Acids Res 18: 2891–2899

    Article  PubMed  CAS  Google Scholar 

  • Lobo SM, Lister J, Sullivan ML, Hernandez N (1991) The cloned RNA polymerase II transcription factor IID selects RNA polymerase III to transcribe the human U6 gene in vitro. Genes Dev 5 (in press)

    Google Scholar 

  • Margottin F, Dujardin G, Gerard M, Egly J-M, Huet J, Sentenac A (1991) Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase C. Science 251: 424–426

    Article  PubMed  CAS  Google Scholar 

  • Mattaj IW, Dathan N, Parry H, Carbon P, Krol A (1988) Changing the RNA polymerase specificity of U snRNA promoters. Cell 55: 435–442

    Article  PubMed  CAS  Google Scholar 

  • Moenne A, Camier S, Anderson G, Margottin F, Beggs J, Sentenac A (1990) The U6 gene of Saccharomyces cerevisiae is transcribed by RNA polymerase C ( III) in vivo and in vitro. EMBO J 9: 271–277

    PubMed  CAS  Google Scholar 

  • Murphy S, Di Liegro C, Melli M (1987) The in vitro transcription of the 7SK RNA gene by RNA polymerase III- is dependent only on the presence of an upstream promoter. Cell 51: 81–87

    Article  PubMed  CAS  Google Scholar 

  • Myslinski E, Ségault V, Branlant C (1990) An intron in the genes for U3 small nucleolar RNAs of the yeast Saccharomyces cerevisiae. Science 247: 1213–1216

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Simmons T, Shuster EO, Siliciano PG, Guthrie C (1988) Genetic analysis of small nuclear RNAs in Saccharomyces cerevisiae: viable sextuple mutant. Mol Cell Biol 8: 3150–3159

    PubMed  CAS  Google Scholar 

  • Parry HD, Scherly D, Mattaj IW (1989) Snurpogenesis: the transcription and assembly of U snRNP components. Trends Biochem Sci 14: 15–19

    Article  CAS  Google Scholar 

  • Patterson B, Guthrie C (1987) An essential yeast snRNA with a U5-like domain is required for splicing in vivo. Cell 49: 613–624

    Article  PubMed  CAS  Google Scholar 

  • Porter G, Brennwald P, Wise JA (1990) Ul small nuclear RNA from Schizosaccharomyces pombe has unique and conserved features and is encoded by an essential single copy gene. Mol Cell Biol 10: 2874–2881

    PubMed  CAS  Google Scholar 

  • Simmen KA, Mattaj IW (1990) Complex requirements for RNA polymerase III transcription of the Xenopus U6 promoter. Nucleic Acids Res 18: 5649–5657

    Article  PubMed  CAS  Google Scholar 

  • Simmen KA, Bernués J, Parry HD, Stunnenberg HG, Berkenstam A, Cavallini B, Egly JM, Mattaj IW (1991) TFIID is required for in vitro transcription of the human U6 gene by RNA polymerase III. EMBO J 10: 1853–1862

    PubMed  CAS  Google Scholar 

  • Simmen KA, Waldschmidt R, Bernués J, Parry HD, Seifart KH, Mattaj IW (1992) PSE factor binding and species specificity in vertebrate U6 snRNA promoters. J Mol Biol 223: 873–884

    Article  PubMed  CAS  Google Scholar 

  • Southgate C, Busslinger M (1989) In vivo and in vitro expression of U7 snRNA genes: cis-and trans-acting elements required for RNA polymerase II directed transcription. EMBO J 8: 539–549

    PubMed  CAS  Google Scholar 

  • Tanaka M, Grossniklaus U, Herr W, Hernandez N (1988) Activation of the U2 snRNA promoter by the octamer motif defines a new class of RNA polymerase II enhancer elements. Genes Dev 2: 1764–1778

    Article  PubMed  CAS  Google Scholar 

  • Tani T, Ohshima Y (1989) The gene for the U6 small nuclear RNA in fission yeast has an intron. Nature (London) 337: 87–90

    Article  CAS  Google Scholar 

  • Topper JN, Clayton DA (1990) Characterization of human MRP/Th RNA and its nuclear gene: full length MRP/Th RNA is an active endoribonuclease when assembled as an RNP. Nucleic Acids Res 18: 793–799

    Article  PubMed  CAS  Google Scholar 

  • Vankan P, Filipowicz W (1989) A U-snRNA gene-specific upstream element and a —30 “TATA box” are required for transcription of the U2 snRNA gene of Arabidopsis thaliana. EMBO J 12: 3875–3882

    Google Scholar 

  • Vankan P, McGuigan C, Mattaj IW (1990) Domains of U4 and U6 snRNAs required for snRNP assembly and splicing complementation in Xenopus oocytes. EMBO J 9: 3397–3404

    PubMed  CAS  Google Scholar 

  • Waibel F, Filipowicz W (1990) RNA-polymerase specificity of transcription of Arabidopsis U snRNA genes determined by promoter element spacing. Nature (London) 346: 199–202

    Article  CAS  Google Scholar 

  • Waldschmidt R, Wanandi I, Seifart KH (1991) Identification of transcription factors required for the expression of mammalian U6 genes in vitro. EMBO J 10: 2595–2603

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernués, J., Gunderson, S.I., Simmen, K.A., Mattaj, I.W. (1992). Polymerase Selectivity and the Promoters of U snRNA Genes. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77356-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77356-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77358-7

  • Online ISBN: 978-3-642-77356-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics