Base-Pair Opening in Double-Stranded Nucleic Acids

  • M. Guéron
  • J.-L. Leroy
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 6)


In the equilibrium configuration, double-stranded nucleic acids are held together by hydrogen-bonded base pairs, often according to the Watson-Crick pairing scheme. Spontaneous fluctuations of these structures are of different types and time scales, and they have attracted much attention. One reason is simply that a structure is not fully understood if its fluctuations are not characterized. Another reason is that the biochemical functions of nucleic acids involve distortions such as bending, twisting, base-pair opening and strand separation, whose understanding benefits from the study of the related spontaneous fluctuations.


Exchange Rate Base Pair Dissociation Constant Exchange Time Brownian Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aymami J, Coll M, Frederick CA, Wang A H-J, Rich A (1989) The propeller DNA conformation of Poly(dA).Poly(dT). Nucleic Acids Res 17: 3229–3245PubMedCrossRefGoogle Scholar
  2. Benight AS, Schurr JM, Flynn PF, Reid BR, Wemmer DE (1988) Melting of a self-complementary DNA minicircle. Comparison of optical melting theory with exchange broadening of the nuclear magnetic resonance spectrum. J Mol Biol 200: 377–399Google Scholar
  3. Bloch G (1989) Etude par RMN d’hexamères synthétiques auto-complémentaires d’ARN: influence de la methyl-5 cytidine sur les transitions conformationnelles et les mouvements moléculaires. Thèse Doct, Univ Paris 6Google Scholar
  4. Briki F, Ramstein J, Lavery R, Genest D (1991) Evidence for the stochastic nature of base pair opening in B-DNA: a Brownian dynamics simulation. J Am Chem Soc 113: 2490–2493CrossRefGoogle Scholar
  5. Braunlin WH, Bloomfield VA (1988) 1HNMR study of the base-pairing reactions of d(GGAATTCC): salt and polyamine effects on the imino proton exchange.Biochemistry 27: 1184–1191PubMedCrossRefGoogle Scholar
  6. Charretier E (1990) Mouvements des paires de bases des acides nucléiques: une étude de la forme B’ de l’ADN et d’un complexe ADN-netropsine par RMN du proton. Thèse Doct, Univ Paris 6Google Scholar
  7. Englander SW, Kallenbach NR (1984) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16: 521–655CrossRefGoogle Scholar
  8. Frank-Kamenetskii MD (1985) Fluctuational motility of DNA. In: Clementi E, Corongiu G, Sarma MH, Sarma RH (eds) Structure and motions: membranes, nucleic acid and proteins. Adenine, Guilderland, pp 417–432Google Scholar
  9. Gao X, Patel DJ (1989) Solution structure of the chromomycin-DNA complex. Biochemistry 28: 751–762PubMedCrossRefGoogle Scholar
  10. Gralla J, Crothers DM (1973) Free energy of imperfect nucleic acid helices. J Mol Biol 73: 497–511PubMedCrossRefGoogle Scholar
  11. Grunwald E, Lowenstein A, Meiboom S (1957) Rates and mechanisms of protolysis of methylammonium ion in aqueous solution studied by proton resonance. J Chem Phys 27: 630–640CrossRefGoogle Scholar
  12. Guéron M, Kochoyan M, Leroy JL (1987) A single mode of DNA base-pair opening drives imino proton exchange. Nature (London) 382: 89–92CrossRefGoogle Scholar
  13. Guéron M, Charretier E, Kochoyan M, Leroy JL (1990a) Applications of imino proton exchange to nucleic acid kinetics and structures. In: Live I, Armitage I, Patel D (eds) UCLA symposia on molecular and cellular biology, new series, vol 109. Liss, New York, pp 225–238Google Scholar
  14. Guéron M, Charretier E, Hagerhorst J, Kochoyan M, Leroy JL, Moraillon A (1990b) Applications of imino proton exchange to nucleic acid kinetics and structures. In: Sarma RH, Sarma MH (eds) Biological structure, dynamics, interactions and expression. Proc 6th Conversation in biomolecular stereodynamics, vol 2. Adenine, Guilderland, pp 113–137Google Scholar
  15. Guéron M, Plateau P, Decorps M (1991) Solvent signal suppression in NMR. Prog Nucl Magn Reson Spectrosc 23: 135–203CrossRefGoogle Scholar
  16. Hartmann B, Leng M, Ramstein J (1986) Poly (dA-dT) Poly (dA-dT) Two pathway proton exchange mechanism: effect of general and specific base catalysis on deuteration rates. Biochemistry 25: 3073–3077PubMedCrossRefGoogle Scholar
  17. Johnston PD, Figueroa N, Redfield AG (1979) Real-time solvent exchange studies of the imino and amino protons of yeast-phenylalanine transfer RNA by Fourier transform NMR. Proc Natl Acad Sci USA 76: 3130–3134PubMedCrossRefGoogle Scholar
  18. Katahira M, Sugeta H, Kyogoku Y (1990) A new model for the bending of DNAs containing the oligo(dA) tracts based on NMR observations. Nucleic Acids Res 18: 613–618PubMedCrossRefGoogle Scholar
  19. Keepers JW, Kollman PA, James TL (1984) Molecular mechanical studies of base-pair opening in d(CGCGC):d(GCGCG), dG65 dC5 d(TATAT):d(ATATA), and dA5 dT5 in the B and Z forms of DNA. Biopolymers 23: 2499–2511PubMedCrossRefGoogle Scholar
  20. Kintanar A, Klevit RE, Reid BR (1987) Two dimensional NMR investigation of a bent DNA fragment: assignment of the proton resonances and preliminary structure analysis. Nucleic Acids Res 15: 5845–5862PubMedCrossRefGoogle Scholar
  21. Kochoyan M, Leroy JL, Guéron M (1987) Proton exchange and base-pair lifetimes in a deoxy-duplex containing a purine-pyrimidine step and in the duplex of inverse sequence. J Mol Biol 196: 599–608PubMedCrossRefGoogle Scholar
  22. Kochoyan M, Lancelot G, Leroy JL (1988) Study of structure base-pair opening kinetics and proton exchange mechanism of the d-(AATTGCAATT) self-complementary oligodeoxynucleotide in solution. Nucleic Acids Res 16: 7685–7702PubMedCrossRefGoogle Scholar
  23. Kochoyan M, Leroy JL, Guéron M (1990) Processes of base-pair opening and proton exchange in Z-DNA. Biochemistry 29: 4799–4805PubMedCrossRefGoogle Scholar
  24. Leontis NB, Moore PB (1986) Imino Proton exchange in the 5S RNA of Escherichia coli and its complex with protein L25 at 490 MHz. Biochemistry 25: 5736–5744PubMedCrossRefGoogle Scholar
  25. Leroy JL (1990) L’échange des protons imino: une sonde du mouvement d’ouverture des bases et de la structure des acides nucléiques. Regards Biochim 5: 57–65Google Scholar
  26. Leroy JL, Bolo N, Figueroa N, Plateau P, Guéron M (1985a) Internal motions of transfer RNA: a study of exchanging protons by magnetic resonance. J Biomol Struct Dyn 2: 915–939PubMedGoogle Scholar
  27. Leroy JL, Broseta D, Guéron M (1985b) Proton exchange and base-pair kinetics of poly (rA) poly (rU) and poly (rI) poly (rC). J Mol Biol 184: 165–178PubMedCrossRefGoogle Scholar
  28. Leroy JL, Kochoyan M, Huynh-Dinh T, Guéron M (1988a) Characterization of base-pair opening in deoxy-duplexes using catalysed exchange of the imino proton. J Mol Biol 200: 223–238PubMedCrossRefGoogle Scholar
  29. Leroy JL, Charretier E, Kochoyan M, Guéron M (1988b) Evidence from base-pair kinetics for two types of adenine tract structures in solution: their relation to DNA curvature. Biochemistry 27: 8894–8898PubMedCrossRefGoogle Scholar
  30. Leroy JL, Gao X, Guéron M, Patel DJ (1991) Proton exchange and internal motions in two chromomycin dimer-DNA oligomer complexes. Biochemistry 30: 5653–5661PubMedCrossRefGoogle Scholar
  31. Leroy JL, Gao X, Misra V, Guéron M, Patel DJ (1992) Proton exchange in DNAluzopeptin and DNA-echinomycin bisintercalation complexes: rates and processes of base-pair opening. Biochemistry (in press)Google Scholar
  32. Lycksell PO, Gräslund A, Claesens F, McLaughlin LW, Larsson U, Rigler R (1987) Base pair opening dynamics of a 2-aminopurine-substituted Eco RI restriction sequence and its unsubstituted counterpart in oligonucleotides. Nucleic Acids Res 15: 9011–9025PubMedCrossRefGoogle Scholar
  33. Mandai C, Kallenbach NR, Englander SW (1979) Base-pair opening reactions in the double helix a stopped-flow hydrogen exchange study in poly (rA) poly (rU). J Mol Biol 135: 391–411CrossRefGoogle Scholar
  34. McCammon JA, Harvey SC (1987) Dynamics of proteins and nucleic acids. Univ Press, CambridgeGoogle Scholar
  35. McConnell B (1978) Exchange mechanisms for hydrogen bonding protons of cytidylic and guanylic acids. Biochemistry 17: 3168–3176PubMedCrossRefGoogle Scholar
  36. McGhee JD, von Hippel PH (1975) Formaldehyde as a probe of DNA structure. Biochemistry 14: 1281–1303PubMedCrossRefGoogle Scholar
  37. Moe JG, Russu IM (1990) Proton exchange and base-pair opening kinetics in 5’-d(CGCGAATTCGCG)-3’ and related dodecamers. Nucleic Acids Res 18: 821–827PubMedCrossRefGoogle Scholar
  38. Nadeau JG, Crothers DM (1989) Structural basis for DNA bending. Proc Natl Acad Sci USA 86: 2622–2626PubMedCrossRefGoogle Scholar
  39. Patel DJ, Shapiro L, Hare D (1987) DNA and RNA: NMR studies of conformations and dynamics in solution. Q Rev Biophys 20: 35–112Google Scholar
  40. Printz MP, von Hippel PH (1965) Hydrogen exchange studies of DNA structure. Proc Natl Acad Sci USA 53: 363–370PubMedCrossRefGoogle Scholar
  41. Ramstein J, Lavery R (1988) Energetic coupling between DNA bending and base pair opening. Proc Natl Acad Sci USA 85: 7231–7235PubMedCrossRefGoogle Scholar
  42. Ramstein J, Lavery R (1990) Base pair opening in B-DNA. Biomol Struct Dyn 7:915–933 Ramstein J, Vogt N, Leng M (1985) Asymmetric opening mechanism of Z-DNA base pairs: a hydrogen exchange study. Biochemistry 24: 3603–3609CrossRefGoogle Scholar
  43. Schimmel PR, Redfield AG (1980) Transfer RNA in solution. Annu Rev Biochem 9: 181–221Google Scholar
  44. Takashima H, Nakanishi N, Tsuboi M (1985) Determination of the kinetics of deuteration of DNA.RNA hybrids by ultraviolet spectroscopy. Biochemistry 24: 4823–4825PubMedCrossRefGoogle Scholar
  45. Teitelbaum H, Englander SW (1975a) Open states in native polynucleotides: I hydrogen-exchange study of adenine-containing double helices. J Mol Biol 92: 55–78Google Scholar
  46. Teitelbaum H, Englander SW (1975b) Open states in native polynucleotides: II hydrogen-exchange study of cytosine-containing double helices. J Mol Biol 92: 79–92Google Scholar
  47. Varani G, Wimberly B, Tinoco I (1989) Conformation and dynamics of an RNA internal loop. Biochemistry 28: 7760–7772PubMedCrossRefGoogle Scholar
  48. Wilcoxon J, Schurr JM (1983) Temperature dependence of the dynamic light scattering of linear Ø 29 DNA: implications for spontaneous opening of the double-helix. Biopolymers 22: 2273–2321PubMedCrossRefGoogle Scholar
  49. Williams MN, Crothers DM (1975) Binding kinetics of mercury ( II) to poíyribonucleotides. Biochemistry 14: 1944–1951Google Scholar
  50. Woodston SA, Crothers DM (1988) Preferential location of bulged guanosine internal to a G.0 tract by H1 NMR. Biochemistry 27: 436–445CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • M. Guéron
  • J.-L. Leroy
    • 1
  1. 1.Groupe de BiophysiqueEcole PolytechniquePalaiseauFrance

Personalised recommendations