Radar Detection Using Array Processing

  • Z. Zhu
  • S. Haykin
Part of the Springer Series in Information Sciences book series (SSINF, volume 25)

Abstract

In a radar system, the antenna part of the system is used not only for transmitting and receiving electromagnetic energy, but also as a spatial sampler of impinging wavefronts on the antenna aperture. Relevant information about the number, the directions, and the signal intensities of sources (i.e., targets in the case of an active radar or emitters in the case of a passive radar) may be extracted by properly processing the spatial samples of the impinging wave-fronts incident on the receiving antenna aperture.

Keywords

Nickel Corn Covariance Radar Kelly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    A.A. Ksienski, R.B. McGhee: Radar signal processing for angular resolution beyond the Rayleigh limit. Radio Electron. Eng. 34, 161–174 (1967)CrossRefGoogle Scholar
  2. 2.2
    G.O. Young, J.E. Howard: Application of space-time decision and estimation theory to antenna processing system design. Proc. IEEE 58, 771–778 (1970)CrossRefGoogle Scholar
  3. 2.3
    W.S. Hodgkiss, L.W. Nolte: Bayes optimum and maximum-likelihood approaches in an array processing problem. IEEE Trans. AES-11, 913–916 (1975)Google Scholar
  4. 2.4
    R.O. Schmidt: A signal subspace approach to multiple emitter location and spectral estimation. Ph.D. Thesis, Stanford University (1981)Google Scholar
  5. 2.5
    U. Nickel: Superresolution using an active antenna array. IEE Conf. Publ. 216, 87#x2013;91 (1982) (RADAR ’82)Google Scholar
  6. 2.6
    J.F. Böhme: Estimation of spectral parameters of correlated signals in wavefields. Signal Processing 11, 329–337 (1986)CrossRefGoogle Scholar
  7. 2.7
    R. Kumaresan, D.W. Tufts: Estimating the angles of arrival of multiple plane waves. IEEE Trans. AES-19, 134–139 (1983)Google Scholar
  8. 2.8
    M. Wax: Detection and estimation of superimposed signals. Ph.D. Thesis, Stanford University (1985)Google Scholar
  9. 2.9
    S. Haykin (ed.): Array Signal Processing (Prentice-Hall, Englewood Cliffs, NJ 1985)MATHGoogle Scholar
  10. 2.10
    C.W. Helstrom: Statistical Theory of Signal Detection, 2nd edn. (Pergamon, Oxford 1968)Google Scholar
  11. 2.11
    H.L. VanTrees: Detection, Estimation and Modulation Theory, Part 1 (Wiley, New York 1968)MATHGoogle Scholar
  12. 2.12
    J.V. DiFranco, V.L. Rubin: Radar Detection (Prentice-Hall, Englewood Cliffs, NJ 1968)Google Scholar
  13. 2.13
    A.D. Whalen: Detection of Signals in Noise (Academic, New York 1971)Google Scholar
  14. 2.14
    M.I. Skolnik: Introduction to Radar Systems, 2nd edn. (McGraw-Hill, New York 1980)Google Scholar
  15. 2.15
    G.M. Stewart: Introduction to Matrix Computations (Academic, New York 1973)MATHGoogle Scholar
  16. 2.16
    E.L. Lehmann: Testing Statistical Hypotheses (Wiley, New York 1959) Chap. 3MATHGoogle Scholar
  17. 2.17
    T.W. Anderson: Asymptotic theory for principal component analysis, Ann. Math. Statist. 34, 122–148 (1963)CrossRefMATHMathSciNetGoogle Scholar
  18. 2.18
    EJ. Kelly, K.M. Forstythe: Adaptive detection and parameter estimation for multidimensional signal models, MIT Lincoln Laboratory, Technical Report 848 (April 1989)Google Scholar
  19. 2.19
    T.J. Shan, M. Wax, T. Kailath: On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. ASSP-33, 806–811 (1985)Google Scholar
  20. 2.20
    G. Su, M. Morf: The signal subspace approach for multiple wide-band emitter location. IEEE Trans. ASSP-31, 1502–1522 (1983)Google Scholar
  21. 2.21
    H. Wang, M. Kaveh: Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources. IEEE Trans. ASSP-33, 823–831 (1985)Google Scholar
  22. 2.22
    K.M. Buckley, L.J. Griffiths: Broad-band signal-subspace spatial-spectrum (BASS-ALE) estimation. IEEE Trans. ASSP-36, 953–964 (1988)Google Scholar

Additional References

  1. W.P. Ballance, A.G. Jaffer: Low-angle direction finding based on maximum likelihood: A Unification. Conf. Record of 21st Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA (1987)Google Scholar
  2. J.F. Böhme: Source-parameter estimation by approximate maximum likelihood and nonlinear regression. IEEE J. Oceanic Engineering OE-10, 206–212 (1985)CrossRefGoogle Scholar
  3. J. Clark: Robustness of eigen based analysis techniques versus iterative adaptation. IEE Conf. Publ. 281 (Radar 7’87) 84–88 (1987)Google Scholar
  4. M.H. El Ayadi: Generalized likelihood adaptive detection of signals deformed by unknown linear filtering in noise with slowly fluctuating power. IEEE Trans. ASSP-33, 401–405 (1985)Google Scholar
  5. H.M. Finn, R.S. Johnson: Adaptive detection mode with threshold control as a function of spatially sampled clutter level estimates. RCA Rev. 29, 414–464 (1968)Google Scholar
  6. S. Haykin: Array Processing: Application to Radar (Dowden, Hutchinson & Ross, Stroudsburg, PA 1980)Google Scholar
  7. EJ. Kelly: An adaptive detection algorithm. IEEE Trans. AES-22, 115–127 (1986)Google Scholar
  8. A.A. Ksienski, R.B. McGhee: A decision theoretic approach to the angular resolution and parameter estimation problem for multiple targets. IEEE Trans. AES-4, 443–455 (1968)Google Scholar
  9. U. Nickel: Super-resolution by spectral line fitting, in signal processing II: Theories and applications, ed. by H.W. Schüssler (Elsevier, Amsterdam 1983)Google Scholar
  10. U. Nickel: Angular superresolution with phased array radar: A review of algorithm and operational constraints, IEE Proc. 134, Pt. F, 53–59 (1987)Google Scholar
  11. R.M. O’Donnell, CE. Muehe, M. Labitt: Advanced signal processing for airport surveillance radars. EASCON’74(1974)Google Scholar
  12. W.L. Root: Radar resolution of closely spaced targets. IRE Trans. MIL-6, 197–204 (1962)Google Scholar
  13. R.O. Schmidt: Multiple emitter location and signal parameter estimation. IEEE Trans. AP-34, 276–280 (1986)Google Scholar
  14. J.A. Stuller: Generalized likelihood signal resolution. IEEE Trans. IT-21, 276–282 (1975)MathSciNetGoogle Scholar
  15. J.B. Thomas, J.K. Wolf: On the statistical detection problem for multiple signals. IRE Trans. IT-8, 274–280 (1962)MathSciNetGoogle Scholar
  16. D.W. Tufts, R. Kumaresan: Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood. Proc. IEEE 70, 975–989 (1982)CrossRefGoogle Scholar
  17. M. Wax, T. Kailath: Optimum localization of multiple sources by passive arrays. IEEE Trans. ASSP-31, 1210–1217 (1983)MathSciNetGoogle Scholar
  18. M. Wax, T. Kailath: Detection of signals by information theoretic criteria. IEEE Trans. ASSP-33, 387–392 (1985)MathSciNetGoogle Scholar
  19. A.J. Weiss, A.S. Willsky, B.C. Levy: Eigenstructure approach for array processing with unknown intensity coefficients. IEEE Trans. ASSP-36, 1613–1617 (1988)Google Scholar
  20. G.O. Young, J.E. Howard: Array processing for target detection in a nonuniform clutter background. Proc. of the Symp. on Computer Processing in Communication, New York (1969) pp. 727–743Google Scholar
  21. L.C. Zhao, P.R. Krishnaiah, Z.D. Bai: On detection of the number of signals in presence of white noise. Multivar. Anal. 20, 1–25 (1986)CrossRefMATHMathSciNetGoogle Scholar
  22. L.C. Zhao, P.R. Krishnaiah, Z.D. Bai: On detection of the number of signals when the noise covariance matrix is arbitrary. J. Multivar. Anal. 20, 26–49 (1986)CrossRefMATHMathSciNetGoogle Scholar
  23. I. Ziskind, M. Wax: Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. ASSP-36, 1553–1560 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Z. Zhu
  • S. Haykin

There are no affiliations available

Personalised recommendations