Piecewise Linear Approximation of Isovalued Surfaces

  • Cornelia Zahlten
Part of the Focus on Computer Graphics book series (FOCUS COMPUTER)

Abstract

Continuation methods provide a frame for the efficient approximation of isovalued surfaces in 3D space. We discuss two related algorithms in this field. The first one is based on subdividing space into cubes, while the second one uses a triangulation approach. For the latter, an efficient implementation is presented. The algorithms determine all cubes (or simplices) intersecting the surface and then generate an oriented polygonal approximation. Comparison shows that the cube approach takes less time and memory. The resulting surfaces have different properties concerning symmetry and connectedness. For demonstration and comparison we use several fractal and smooth surfaces. These surfaces are implicitly defined by a function, however it is also possible to apply both methods to 3D volume data.

Keywords

Manifold Rubber Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgower, E.L., Georg, K. (1990) Introduction to numerical continuation methods. Springer Verlag, New YorkCrossRefGoogle Scholar
  2. Allgower, E.L., Georg, K., Widmann, R. (1991) Volume integrals for boundary element methods. J. Comp. Appl. Math, (to appear)Google Scholar
  3. Allgower, E.L., Gnutzmann, S. (1987) An algorithm for piecewise linear approximation of implicitly defined two-dimensional surfaces. SIAM J. Numer. Anal. 24, pp. 452–469MathSciNetMATHCrossRefGoogle Scholar
  4. Allgower, E.L., Gnutzmann, S. (1991) Polygonal meshes for implicitly defined surfaces. Computer Aided Geometric Design (to appear)Google Scholar
  5. Allgower, E.L., Schmidt, P.H. (1985) An algorithm for piecewise linear approximation of an implicitly defined manifold. SIAM J. Numer. Anal. 22, pp. 322–346MathSciNetMATHCrossRefGoogle Scholar
  6. Fischer, G. (1986) Mathematical models, vol. I and II. Vieweg Verlag, BraunschweigMATHGoogle Scholar
  7. Jürgens, H. (1989) Optimierte Oberflächenabtastung mit orientierten Kubusketten. In: H. Jürgens, D. Saupe (eds.) Visualisierung in Mathematik und Naturwissenschaften, Springer Verlag, Berlin, pp. 53–66Google Scholar
  8. Lorensen, W.E., Cline, H.E. (1987) Marching cubes: a high resolution 3D surface construction algorithm. Computer Graphics (Proc. SIGGRAPH) 21 (4), pp. 163–169CrossRefGoogle Scholar
  9. Norton, A. (1982) Generation and display of geometric fractals in 3D. Computer Graphics (Proc. SIGGRAPH) 16 (3), pp. 61–66CrossRefGoogle Scholar
  10. Widmann, R. (1990) An efficient algorithm for the triangulation of surfaces in R 3. Colorado State University, Fort CollinsGoogle Scholar
  11. Wilhelms, J., van Gelder, A. (1990) Topological ambiguities in isosurface generation. Technical report UCSC-CRL-90–14, CIS Board, University of California, Santa CruzGoogle Scholar
  12. Wyvill, G., McPheeters, C., Wyvill, B. (1986) Data structure for soft objects. Visual Computer 2 (4), pp. 227–234CrossRefGoogle Scholar
  13. Zahlten, C., Jürgens, H. (1991) Continuation methods for approximating isovalued complex surfaces. In: F.H. Post, W. Barth (eds.) Eurographics ’91 in Vienna, Austria, North Holland, AmsterdamGoogle Scholar

Copyright information

© EUROGRAPHICS The European Association for Computer Graphics 1992

Authors and Affiliations

  • Cornelia Zahlten

There are no affiliations available

Personalised recommendations