Low Temperature Stochastic Spin Dynamics: Metastability, Convergence to Equilibrium and Phase Segregation

  • Fabio Martinelli
Conference paper


I will report on recent progresses made in the rigorous study of the long time behaviour of random dynamics of physical and mathematical interest for ferromagnetic spin systems in the low temperature regime. In particular I will discuss metastability and its connection with the problem of the convergence to equilibrium for a standard Glauber dynamics for the Ising model, dynamical phase transition, dynamics of the interface and phase segregation for conservative spin flips dynamics.


Ising Model Gibbs Measure Gibbs State Phase Segregation Hydrodynamic Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holley, R.: Possible rates of convergence in finite range, attractive spin systems. Contemp.Math. 41, (1985)Google Scholar
  2. 2.
    Holley, R.: Rapid convergence to equilibrium in one dimensional stochastic Ising models. Ann.Probab. 13, 72–89 (1985)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Holley, R., Strook, D.: L2 theory of the stochastic Ising model. Z. Wahr. verw.Geb. 35 (1976)Google Scholar
  4. 4.
    Jordao Neves, E., Schonmann, R.H.: Critical Droplets and Metastability for a Glauber Dynamics at Very Low Temperatures. Preprint Univ. Sao PauloGoogle Scholar
  5. 5.
    Jordao Neves, E., Schonmann, R.H.: Behaviour of droplets for a class of Glauber dynamics at very low temperatures. Comm.Math.Phys. 137, 209 (1991)MathSciNetCrossRefMATHADSGoogle Scholar
  6. 6.
    Martinelli, F., Olivieri, E., Scoppola, E.: On the Swendsen and Wang dynamics II: Critical droplets and homogeneous nucleation at low temperature for the 2 dimensional Ising model. J.Statist.Phys. 62 N. 1/2, 135 (1991)MathSciNetCrossRefMATHADSGoogle Scholar
  7. 7.
    Koteski, R., Olivieri, E.: Private communicationGoogle Scholar
  8. 8.
    Jordao Neves, E.: PhD thesis Istituto de Matematica e Estatistica da Universitade de Sao paulo, Brasil 1990Google Scholar
  9. 9.
    Martinelli, F., Olivieri, E., Scoppola, E.: Metastability and exponential approach to equilibrium for low temperature stochastic Ising models. J.Statist. Phys. 61 N.5/6, 1105 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  10. 10.
    Martinelli, F., Olivieri, E., Scoppola, E.: On the Swendsen and Wang dynamics I. Exponential convergence to equilibrium. J.Statist.Phys. 62 N. 1/2, 117 (1991)MathSciNetCrossRefMATHADSGoogle Scholar
  11. 11.
    Schonmann, R.: Private communicationGoogle Scholar
  12. 12.
    Liggett, T.M.: Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, 276, (1985) Springer, Berlin-Heidelberg-New YorkMATHGoogle Scholar
  13. 13.
    Huse, D.A., Fisher, D.S.: Phys.Rev. B 35, 6841 (1987)CrossRefADSGoogle Scholar
  14. 14.
    Ogielski: Dynamics of fluctuations in the order phase of kinetic Ising model. Phys.Rev. B 36 No. 13, 7315 (1987)CrossRefADSGoogle Scholar
  15. 15.
    De Mottoni, Schatzmann: Geometrical evolutions of developed interfaces. Proc.Roy.Soc. Edinburgh, to appearGoogle Scholar
  16. 16.
    Toom, A.L.: Stable and attractive trajectories in multicomponents random fields. In: Multicomponenets Random Fields. R.L. Dobrushin and Ya.G. Sinai eds. New York, Marcel Dekker (1980)Google Scholar
  17. 17.
    Martinelli, F.: Low temperature behaviour of Swedsen-Wang Monte Carlo algorithm. Preprint Roma 1991Google Scholar
  18. 18.
    Spohn, H.: The dynamics of systems with many particles. Springer-Verlag New York (1991)Google Scholar
  19. 19.
    Rezakhanlou, F.: Hydrodynamic limit for a system with finite range interaction. Comm.Math.Phys. 137, 209 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lebowitz, J.L., Orlandi, E., Presutti, E.: A particle model for spinodal decomposition. J.Statist.Phys. 63, 933–974 (1991)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Lebowitz, J.L., Penrose, O.: Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition. J.Math.Phys. 7, 98 (1966)MathSciNetCrossRefMATHADSGoogle Scholar
  22. 22.
    Lebowitz, J.L., Penrose, O.: Rigorous treatment of metastable states in the Van der Waals Maxwell theory. J.Statist.Phys. 3, 211 (1971)MathSciNetCrossRefMATHADSGoogle Scholar
  23. 23.
    Presutti, E.: Private communicationGoogle Scholar
  24. 24.
    Giacomin: Van der Wals limit and phase separation in a particle model with Kawasaki dynamics. CARR report in math. phys. n.5/91 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Fabio Martinelli
    • 1
  1. 1.Dipartimento di MatematicaUniversita’ ”La Sapienza”RomaItaly

Personalised recommendations