On the Atomic Energy Asymptotics

  • C. L. Fefferman
  • L. A. Seco
Conference paper

Abstract

Consider an atom consisting of N quantized electrons at positions x i and a nucleus fixed at the origin. The Schrödinger Hamiltonian of such a system is given by
$${H_{Z,N}} = \sum\limits_{i = 1}^N {\left( { - {\Delta _{{x_i}}} - \frac{Z} {{\left| {{x_i}} \right|}}} \right)} + \frac{1} {2}\sum\limits_{i \ne j} {\frac{1} {{\left| {{x_i} - {x_i}} \right|}}} $$
acting on \( = \wedge _{i = 1}^N{L^2} \) (R3) (in this exposition, in order to simplify notation, we neglect spin.) Define the ground state of an atom of charge Z by
$$ E\left( Z \right) = {\kern 1pt} \mathop {\inf }\limits_N \mathop {\inf }\limits_{\mathop {\left\| \Psi \right\| = 1}\limits_{\Psi \in } } \;\left\langle {{H_{Z,N\Psi ,\Psi }}} \right\rangle $$
.

Keywords

Seco Hydrogen Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conlon, J.: Semiclassical Limit Theorems for Hartree-Fock Theory. Comm. Math.Phys. 88 no 1 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dirac, P.: Note on Exchange Fenomena in the Thomas-Fermi Atom. Proc. Cambridge Philos.Soc. 26, 376 – 385 (1930)CrossRefMATHADSGoogle Scholar
  3. 3.
    Fefferman, C., Seco, L.: The Ground State of a Large Atom. Bull. AMS (1990)Google Scholar
  4. 4.
    Fefferman, C., Seco, L.: On the Dirac and Schwinger Corrections to the Ground-State Energy of an Atom. Adv. in Math. (To appear)Google Scholar
  5. 5.
    Fefferman, C., Seco L.: Eigenvalues and Eigenfunctions of Ordinary Differential Operators. Adv. in Math. (To appear)Google Scholar
  6. 6.
    Fefferman, C., Seco L.: The Density in a One-Dimensional Potential. Adv. in Math. (To appear)Google Scholar
  7. 7.
    Fefferman, C., Seco L.: The Eigenvalue Sum for a One-Dimensional Potential. Adv. in Math. (To appear)Google Scholar
  8. 8.
    Fefferman, C., Seco L.: The Density in a Three-Dimensional Radial Potential. Adv. in Math. (To appear)Google Scholar
  9. 9.
    Fefferman, C., Seco L.: The Eigenvalue Sum in a Three-Dimensional Potential. Adv. in Math. (To appear)Google Scholar
  10. 10.
    Fefferman, C., Seco L.: Aperiodicity of the Hamiltonian Flow in the Thomas-Fermi Potential. Adv. in Math. (To appear)Google Scholar
  11. 11.
    Fermi, E.: Un Metodo Statistico per la Determinazione di alcune Priorieta dell’Atome. Rend.Accad.Naz.Lincei 6, 602 – 607 (1927)Google Scholar
  12. 12.
    Hughes, W.: An Atomic Energy Lower Bound that Agrees with Scott’s Correction. Adv. in Math. 79, 213 – 270 (1990).Google Scholar
  13. 13.
    Ivrii V., Sigal I.M.: To appear in Ann. of Math.Google Scholar
  14. 14.
    Lieb, E.: Thomas-Fermi and Related Theories of Atoms and Molecules. Rev.Modern Phys. 53 no. 4 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lieb, E. H. A Lower Bound for Coulomb Energies. Phys. Lett. 70A, 444 – 446 (1979)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Lieb E., Simon B.: Thomas-Fermi Theory of Atoms, Molecules and Solids. Adv. in Math. 23, 22 – 116 (1977)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Schwinger, J.: Thomas-Fermi Model: The Second Correction. Phys.Rev. A 24, 5, 2353 – 2361 (1981)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Scott, J. M. C: The Binding Energy of the Thomas-Fermi Atom. Phil.Mag. 43, 859 – 867 (1952)Google Scholar
  19. 19.
    Siedentop, H., Weikard, R.: On the Leading Energy Correction for the Statistical Model of the Atom: Interacting Case. Comm.Math.Phys. 112, 471–490 (1987)MathSciNetCrossRefMATHADSGoogle Scholar
  20. 20.
    Siedentop, H., Weikard, R.: On the Leading Correction of the Thomas-Fermi Model: Lower Bound. Invent.Math., 97, 159 – 193 (1989)MathSciNetCrossRefMATHADSGoogle Scholar
  21. 21.
    Siedentop, H., Weikard, R.: A Lower Bound of Scott Type by a New Microlocalization Technique. To appear (1990)Google Scholar
  22. 22.
    Thomas, L. H.: The Calculation of Atomic Fields. Proc.Cambridge Philos.Soc. 23, 542 – 548 (1927)CrossRefMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • C. L. Fefferman
    • 1
  • L. A. Seco
    • 2
  1. 1.Princeton UniversityUSA
  2. 2.California Institute of TechnologyUSA

Personalised recommendations