Advertisement

Three Exactly Soluble Quantum Field Theory Models in 2-,3- and 4-Dimensional Space Time and Some General Questions They Suggest

  • Arthur S. Wightman

Abstract

As a result of three decades of hard work on the local algebra formalism, we now have a general theory of quantized fields that provides a satisfactory framework for field theory. On the other hand, constructive quantum field theory has made rather limited progress toward the objective of characterizing and constructing all field theories that satisfy the axioms of the general theory. We do have the nontrivial examples P(ϕ)2,Y 2 3 4 ,Y 3,Higgs2,Higgs3 and fragments of Y M 3 and Y M 4. However, these examples do not provide enough information to suggest reasonable guesses for the answers to general questions. For example, how do the perturbatively non-renormalizable theories fit into the general picture? The recent results of da Veiga and coworkers establishing the existence of tempered solutions of the Gross-Neveu model in three dimensional Euclidean space-time, show that a non-perturbative treatment of a perturbatively non-renormalizable theory is possible using rigorous renormalization group methods. What distinguishes such theories? Is the applicability of renormalization group methods to be regarded as always a reliable guide to the existence of non-trivial solutions of theories?

Keywords

Renormalization Group Method Inequivalent Representation Reasonable Guess Dual Potential Dirac Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wightman, A.S.: Introduction to some Aspects of the Relativistic Dynamics of Quantized Fields. Cargése Lectures in Theoretical Physics 1964, Ed. M. Levy, Gordon and Breach 1967, esp. 233–238.Google Scholar
  2. 1a.
    For important further developments: Pohlmeyer, K.: The Equation Curl W μ(x) = 0 in Quantum Field Theory. Comm.Math.Phys. 25, 73–86 (1972)MathSciNetCrossRefMATHADSGoogle Scholar
  3. 2.
    Lehmann, H. and Stehr, J.: The Bose Field Structure Associated with a Free Massive Dirac Current in One Space Dimension. DESY 76/29, June 1976Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Arthur S. Wightman
    • 1
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations