Dynamical Zeta Functions: Where Do They Come from and What Are They Good for ?

  • David Ruelle
Conference paper

Abstract

The properties and usefulness of dynamical zeta functions associated with maps and flows are discussed, and they are compared with the more traditional number-theoretic zeta functions.

Keywords

Entropy Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M., Mazur, B.: On periodic points. Ann.of Math. (2) 81, pp. 82–99 (1965)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Artuso, R., Aurell, E., Cvitanovic, P.: Recycling of strange sets: I. Cycle expansions, II. Applications. Nonlinearity 3, pp. 325–359, 361–386 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  3. 3.
    Baladi, V. and Keller, G.: Zeta functions and transfer operators for piece-wise monotone transformations. Comm.Math.Phys. 127, pp. 459–477 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  4. 4.
    Cartier, P. and Voros, A.: Une nouvelle interprétation de la formule des traces de Selberg. C.R. Acad.Sci.Paris, 307, Ser. I, pp. 143–148 (1988)MathSciNetMATHGoogle Scholar
  5. 5.
    Deligne, P.: La conjecture de Weyl. Publ.math. IHES, 43, pp. 273–307 (1974)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fried, D.: The zeta functions of Ruelle and Selberg I. Ann.Sci. E.N.S. 19, pp. 491–517 (1986)MathSciNetMATHGoogle Scholar
  7. 7.
    Grothendick, A.: La théorie de Fredholm. Bull.Soc.Math.France 84, pp. 319–384 (1956)MathSciNetGoogle Scholar
  8. 8.
    Guckenheimer, J.: Axiom A + no cycles ⇒ ζ f (t) rational. Bull.AMS 76, pp. 592–594 (1970)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Haydn, N.: Meromorphic extension of the zeta function for Axiom A flows. Ergodic Therory Dynamical Systems 10, pp. 347–360 (1990)MathSciNetMATHGoogle Scholar
  10. 10.
    Korevaar, J.: On Newman’s quick way to the prime number theorem. Math. Intelligencer 4, pp.108–115 (1982)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Manning, A.: Axiom A diffeomorphisms have rational zeta functions. Bull. London Math.Soc. 3, pp. 215–220 (1971)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mayer, D.: On a zeta function related to the continued fraction transformation. Bull.Soc.Math. France 104, pp. 195–203 (1976)MATHADSGoogle Scholar
  13. 13.
    Mayer, D.: On the thermodynamic formalism for the Gauss map. Comm. Math.Phys. 130, pp. 311–333 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  14. 14.
    Mayer, D.: The thermodynamic formalism approach to Selberg’s zeta function for PSL (2, ℤ). Bull.Amer.Math.Soc. 25, pp. 55–60 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nihon Sugakkai, ed.: Encyclopedic dictionary of mathematics. MIT Press, Cambridge, Mass., (1977)Google Scholar
  16. 16.
    Parry, W., Pollicott, M.: An analogue of the prime number theorem for closed orbits of Axiom A flows. Ann.Math. 118, pp. 573–591 (1983)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188, pp. 1–268 (1990)Google Scholar
  18. 18.
    Pollicott, M.: Meromorphic extensions of generalised zeta functions. Invent.Math. 85, pp. 147–164 (1986)MathSciNetCrossRefMATHADSGoogle Scholar
  19. 19.
    Pollicott, M.: Distribution of closed geodesics on the modular surface and quadratic irrationals. Bull.Soc.Math. France 114, pp. 431–446 (1986)MathSciNetMATHGoogle Scholar
  20. 20.
    Pollicott, M.: Margulis distributions for Anosov flows. Comm.Math.Phys. 113, pp. 137–154 (1987)MathSciNetCrossRefMATHADSGoogle Scholar
  21. 21.
    Ruelle, D.: Generalized zeta-functions for axiom A basic sets. Bull.Amer. Math.Soc. 82, pp. 153–156 (1976)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ruelle, D.: Zeta functions for expanding maps and Anosov flows. Invent. Math. 34, pp. 231–242 (1976)MathSciNetCrossRefMATHADSGoogle Scholar
  23. 23.
    Ruelle, D.: Zeta functions and statistical mechanics. Astérisque 40, pp. 167–176 (1976)MathSciNetGoogle Scholar
  24. 24.
    Ruelle, D.: Thermodynamic Formalism. Encyclopedia of Math, and its Appl. Vol. 5, Addison-Wesley, Reading, Mass. (1978)Google Scholar
  25. 25.
    Ruelle, D.: The thermodynamic formalism for expanding maps. Comm. Math.Phys. 125, pp. 239–262 (1989)MathSciNetCrossRefMATHADSGoogle Scholar
  26. 26.
    Ruelle, D.: An extension of the theory of Fredholm determinants. Publ. Math. IHES, 72, pp. 175–193 (1990)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ruelle, D.: Spectral properties of a class of operators associated with con-formal maps in two dimensions (preprint)Google Scholar
  28. 28.
    Sarnak, P.: Class numbers of indefinite binary quadratic forms. J.Number Theory 15, pp. 229–247 (1982)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sarnak, P.: Determinants of Laplacians. Comm.Math.Phys. 110, pp. 113–120 (1987)MathSciNetCrossRefMATHADSGoogle Scholar
  30. 30.
    Selberg, A.: Harmonic analysis and discontinuous subgroups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J.Indian Math.Soc. 20, pp. 47–87 (1956)MathSciNetMATHGoogle Scholar
  31. 31.
    Series, C.: The modular surface and continued fractions. J.London Math. Soc. (2) 31, pp. 69–80 (1985)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Smale, S.: Differentiable dynamical systems. Bull.Amer.Math.Soc.73, pp. 747–817 (1967)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Tangerman, F.: Meromorphic continuation of Ruelle zeta functions. Boston University thesis (1986) unpublishedGoogle Scholar
  34. 34.
    Weil, A.: Numbers of solutions of equations in finite fields. Bull.Amer.Math. Soc. 55, pp. 497–508 (1949)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • David Ruelle
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations