Asymptotic Completeness for N-Body Quantum Systems

  • Gian Michele Graf
Conference paper


We give a sketch of a geometrical proof of asymptotic completeness for an arbitrary number of quantum particles interacting through short-range pair potentials.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators, Springer (1987)MATHGoogle Scholar
  2. 2.
    Deift, P., Simon, B.: A time-dependent approach to the completeness of multiparticle quantum systems. Comm.Pure Appl.Math. 30, 573–583 (1977)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Derezinski, J.: A new proof of the propagation theorem for N-body quantum systems. Comm.Math.Phys. 122, 203–231 (1989)MathSciNetCrossRefMATHADSGoogle Scholar
  4. 4.
    Derezinski, J.: Algebraic approach to the N-body quantum long range scattering, Warsaw University preprint (1990)Google Scholar
  5. 5.
    Enns, V.: Asymptotic completeness for quantum-mechanical potential scattering, I. Short-range potentials. Comm.Math.Phys. 61, 285–291 (1978)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Enns, V.: Completeness of Three-Body Quantum Scattering. In: Dynamics and Processes. Ed. by P. Blanchard, L. Streit, Lecture Notes in Mathematics, Vol. 1031, pp. 62–88, Springer (1983)CrossRefGoogle Scholar
  7. 7.
    Enns, V.: Introduction to asymptotic observables for multi-particle quantum scattering. In: Schrödinger Operators. Aarhus 1985. Ed. by E. Balslev, Lecture Notes in Mathematics, Vol. 1218, pp. 61–92, Springer (1986)CrossRefGoogle Scholar
  8. 8.
    Enns, V.: Two- and three-body quantum scattering: Completeness revisited. In: Symposium “Partial Differential Equations” Holzhau 1988. Ed. by B.-W. Schulze and H. Triebel, Texte zur Mathematik, Vol. 112, pp. 108–120, Teubner (1989)Google Scholar
  9. 9.
    Faddeev, L.: Mathematical Aspects of the Three Body Problem in Quantum Scattering Theory (Steklov Institute 1963), Israel Program for Scientific Translation (1965)MATHGoogle Scholar
  10. 10.
    Froese, R., Herbst, I.: A new proof of the Mourre estimate. Duke Math.J. 49, 1075–1085 (1982)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Graf, G.M.: Asymptotic completeness for N-body short-range quantum systems: A new proof. Comm.Math.Phys. 132, 73–101 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  12. 12.
    Kato, T.: Wave operators and similarity for some non-self-adjoint operators. Math.Ann. 162, 258–279 (1966)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kato, T.: Smooth operators and commutators. Stud.Math. 31, 535–546 (1968)MATHGoogle Scholar
  14. 14.
    Lavine, R.: Absolute continuity of Hamiltonian operators with repulsive potentials. Proc.Amer.Math.Soc. 22, 55–60 (1969)MathSciNetMATHGoogle Scholar
  15. 15.
    Mourre, E.: Link between the geometrical and the spectral transformation approaches in scattering theory. Comm.Math.Phys. 68, 91–94 (1979)MathSciNetCrossRefMATHADSGoogle Scholar
  16. 16.
    Mourre, E.: Absence of singular continuous spectrum for certain selfadjoint operators. Comm.Math.Phys. 78, 391–408 (1981)MathSciNetCrossRefMATHADSGoogle Scholar
  17. 17.
    Mourre, E.: Operateurs conjugés et propriété de propagation. Comm.Math. Phys. 91, 279–300 (1983)MathSciNetCrossRefMATHADSGoogle Scholar
  18. 18.
    Perry, P., Sigal, I.M., Simon, B.: Spectral analysis of N-body Schrödinger operators. Ann.Math. 114, 519–567 (1981)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Povzner, A.J.: On eigenfunction expansions in terms of scattering solutions. Dokl.Akad.Nauk SSSR 104, (1955)Google Scholar
  20. 20.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, III. Scattering Theory. Academic Press (1979)MATHGoogle Scholar
  21. 21.
    Sigal, I.M.: Scattering Theory for Many-Body Quantum Mechanical Systems. Lecture Notes in Mathematics, Vol. 1011, Springer Verlag (1983)MATHGoogle Scholar
  22. 22.
    Sigal, I.M., Soffer, A.: The N-particle scattering problem: asymptotic completeness for short-range systems. Ann.Math. 126, 35–108 (1987)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sigal, I.M., Soffer, A.: Local decay and propagation estimates for time-dependent and time-independent Hamiltonians. Princeton University preprint (1988)Google Scholar
  24. 24.
    Sigal, I.M., Soffer, A.: Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials. Invent.Math. 99, 115–143 (1990)MathSciNetCrossRefMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Gian Michele Graf
    • 1
  1. 1.Division of Physics, Mathematics and AstronomyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations