On the General Theory of Quantized Fields

  • Klaus Fredenhagen
Conference paper

Abstract

The term “General Theory of Quantized Fields”, replacing the synonymous but somewhat misleading term “Axiomatic Field Theory”, is to my knowledge due to Res Jost. He was one of the great pioneers in our field, and I dedicate this lecture to his memory. What is the aim of the general theory of quantized fields?

Keywords

Manifold Covariance Soliton Stein Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jost, R.: The General Theory of Quantized Fields. AMS 1965, Providence, Rhode IslandMATHGoogle Scholar
  2. 2.
    Wick, G.C., Wightman, A.S., Wigner, E.P.: Phys.Rev. 88, 101 (1952)MathSciNetCrossRefMATHADSGoogle Scholar
  3. 3.
    Haag, R., Kastler, D.: J.Math.Phys. 5, 848(1964)MathSciNetCrossRefMATHADSGoogle Scholar
  4. 4.
    Borchers, H.-J.: Comm.Math.Phys. 1, 281 (1965)MathSciNetCrossRefMATHADSGoogle Scholar
  5. 5.
    Doplicher, S., Haag, R., Roberts, J.E.: Comm.Math.Phys. 23, 199 (1971);MathSciNetCrossRefADSGoogle Scholar
  6. 5a.
    Doplicher, S., Haag, R., Roberts, J.E.: Comm.Math.Phys. 35, 49 (1974)MathSciNetCrossRefADSGoogle Scholar
  7. 6.
    Jones, V.F.: Invent.Math. 72, 1 (1983)MathSciNetCrossRefMATHADSGoogle Scholar
  8. 7.
    Longo, R.: Comm.Math.Phys. 126, 217(1989);MathSciNetCrossRefMATHADSGoogle Scholar
  9. 7a.
    Longo, R.: Comm.Math.Phys. 130, 285 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  10. 8.
    Pimsner, M., Popa, S.: Ann. Sci. École Norm. Sup. 19, 57 (1986)MathSciNetMATHGoogle Scholar
  11. 9.
    Fredenhagen, K., Rehren, K.H., Schroer, B.: Comm.Math.Phys. 125, 201 (1989)MathSciNetCrossRefMATHADSGoogle Scholar
  12. 10.
    Birman, J.: Braids, Links and Mapping Class Groups. Ann. Math.Studies 82, Princeton University Press 1974Google Scholar
  13. 11.
    Ocneanu, A.: London Math.Soc, Lect. Notes Vol. 136, Evans, Takesaki (eds.), 119–172 (1989)Google Scholar
  14. 12.
    Wenzl, H.: Invent.Math. 92, 349 (1988)MathSciNetCrossRefMATHADSGoogle Scholar
  15. 13.
    Freyd, P., Yetter, D., Hoste, J., Lickorish, W., Millet, K., Ocneanu, A.: Bull.AMS 12, 103 (1985)CrossRefGoogle Scholar
  16. 14.
    Longo, R.: Minimal Index and Braided Subfactors (preprint)Google Scholar
  17. 15.
    Rehren, K.H.: Braid Group Statistics and their Superselection Rules. In: The Algebraic Theory of Superselection Sectors. Introduction and Recent Results. D. Kastler (ed.), World Scientific 1990Google Scholar
  18. 16.
    Birman, J., Wenzl, H.: Trans. AMS 313, 249 (1989)MathSciNetCrossRefMATHGoogle Scholar
  19. 17.
    Murakami, J.: Osaka J.Math. 24, 745 (1987)MathSciNetMATHGoogle Scholar
  20. 18.
    Wenzl, H.: Comm. Math. Phys. 133, 383 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  21. 19.
    Kauffman, L.H.: On Knots. Annals of Math. Study 115, Princeton University Press (1987)MATHGoogle Scholar
  22. 20.
    Buchholz, D., Fredenhagen, K.: Comm.Math.Phys. 84, 1 (1982)MathSciNetCrossRefMATHADSGoogle Scholar
  23. 21.
    Fredenhagen, K., Comm. Math. Phys. 79, 141 (1981)MathSciNetCrossRefADSGoogle Scholar
  24. 22.
    Fröhlich, J., Gabbiani, F.: Rev.Math.Phys. 2, 251 (1990)MathSciNetCrossRefMATHGoogle Scholar
  25. 23.
    Fredenhagen, K.: Structure of Superselection Sectors in Low Dimensional Quantum Field Theory. In: Differential Geometric Methods in Theoretical Physics. L.L. Chau, W. Nahm (eds.), Plenum Press 1990Google Scholar
  26. 24.
    Fredenhagen, K.: Generalizations of the Theory of Superselection Sectors. See ref.15Google Scholar
  27. 25.
    Fröhlich, J.: Comm. Math. Phys. 47, 269 (1976)MathSciNetCrossRefADSGoogle Scholar
  28. 26.
    Moore, G., Seiberg, N.: Phys.Lett. 212 B, 451 (1988)Google Scholar
  29. 27.
    Doplicher, S., Roberts, J.E.: Ann.Math. 130, 75 (1989)MathSciNetCrossRefMATHGoogle Scholar
  30. 28.
    Doplicher, S., Roberts, J.E.: Comm. Math. Phys. 131, 51 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  31. 29.
    J.Fröhlich, Kerler, T. (to be published)Google Scholar
  32. 30.
    Hadjiivanov, L.K., Paunov, R.R., Todorov, I.T.: Quantum Group Extended Chiral p-Models. INRNE-TH-90–7 (preprint)Google Scholar
  33. 31.
    G. Mack, V. Schomerus: Quasi Quantum Group Symmetry and Local Braid Relations in the Conformai Ising Model. DESY 91–060 (preprint)Google Scholar
  34. 32.
    Rehren, K.H.: Field Operators for Anyons and Plektons. DESY 91–043Google Scholar
  35. 33.
    Haag, R.,: Phys.Rev. 112, 669 (1958)MathSciNetCrossRefMATHADSGoogle Scholar
  36. 34.
    Ruelle, D.: Helv.Phys.Acta 35, 147 (1962)MathSciNetMATHGoogle Scholar
  37. 35.
    Buchholz, D.: Comm. Math. Phys. 52, 147 (1977)MathSciNetCrossRefADSGoogle Scholar
  38. 36.
    Fröhlich, J., Marchetti, P.: Nucl.Phys. B 356, 533 (1991)CrossRefADSGoogle Scholar
  39. 37.
    Rüger, S.: Streutheorie für Teilchen mit Zopfgruppenstatistik. Diplomarbeit FU Berlin 1990Google Scholar
  40. 38.
    Barata, J.C.A., Fredenhagen, K.: Comm. Math. Phys. 138, 507 (1991)MathSciNetCrossRefMATHADSGoogle Scholar
  41. 39.
    Buchholz, D., Porrmann, M., Stein, U.: Dirac versus Wigner: Towards a Universal Particle Concept in Local Quantum Field Theory. DESY 91–062 (preprint) (to appear in Phys.Lett.B)Google Scholar
  42. 40.
    Narnhofer, H., Requardt, H., Thirring, W.: Comm. Math. Phys. 92, 247 (1983)MathSciNetCrossRefMATHADSGoogle Scholar
  43. 41.
    Landsman, N.P.: Nucl.Phys. A 525, 397 (1991)MathSciNetCrossRefADSGoogle Scholar
  44. 42.
    Haag, R., Swieca, J.A.: Comm. Math. Phys. 1, 308 (1965)MathSciNetCrossRefMATHADSGoogle Scholar
  45. 43.
    Buchholz, D., Wichmann, E.: Comm. Math. Phys. 106, 106 (1986)MathSciNetCrossRefGoogle Scholar
  46. 44.
    Buchholz, D., Junglas, P.: Lett. Math. Phys. 11, 51 (1986)MathSciNetCrossRefMATHADSGoogle Scholar
  47. 45.
    Reeh, H., Schlieder, S.: Nuovo Cim. X 22, 1051 (1961)MathSciNetCrossRefGoogle Scholar
  48. 46.
    Bisognano, J.J., Wichmann, E.H.: J.Math.Phys 17, 303 (1975)MathSciNetCrossRefADSGoogle Scholar
  49. 47.
    Borchers, H.J.: The CPT Theorem in Two-Dimensional Theories of Local Observables (preprint 1991)Google Scholar
  50. 48.
    Buchholz, D., D’Antoni, C., Longo, R.: J.Funct.Anal. 88, 233 (1990);MathSciNetCrossRefMATHGoogle Scholar
  51. 48a.
    Buchholz, D., D’Antoni, C., Longo, R.: Commun. Math. Phys. 129, 115 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  52. 49.
    Buchholz, D., Yngvason, J.: Generalized Nuclearity Conditions and the Split Property in Quantum Field Theory (preprint)Google Scholar
  53. 50.
    Borchers, H.J., Zimmermann, W.: Nuovo Cim. 31, 1047 (1964)MathSciNetCrossRefMATHGoogle Scholar
  54. 51.
    Driessler, W., Fröhlich, J.: Ann.Inst.H. Poincaré 27, 221 (1977)MATHADSGoogle Scholar
  55. 52.
    Driessler, W., Summers, S.J., Wichmann, E.H.: Comm.Math.Phys. 105, 49 (1986)MathSciNetCrossRefMATHADSGoogle Scholar
  56. 53.
    Buchholz, D.: J.Math.Phys. 31, 1839 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  57. 54.
    Borchers, H.J., Yngvason, J.: Comm. Math. Phys. 127, 607 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  58. 55.
    Fredenhagen, K., Hertel, J.: Comm. Math. Phys. 80, 555 (1981)MathSciNetCrossRefMATHADSGoogle Scholar
  59. 56.
    Summers, S.J.: Helv.Phys.Acta 60, 1004 (1987)MathSciNetGoogle Scholar
  60. 57.
    Rehberg, H., Wollenberg, M.: Math. Nachr. 125, 1 (1986)MathSciNetGoogle Scholar
  61. 58.
    Wollenberg, M.: Rep.Math.Phys. 22, 409 (1985);MathSciNetCrossRefMATHADSGoogle Scholar
  62. 58a.
    Wollenberg, M.: Math.Nachr. 128, 169 (1986)MathSciNetCrossRefGoogle Scholar
  63. 59.
    Jörß, M.: Lokale Netze auf dem eindimensionalen Lichtkegel. Diplomarbeit FU Berlin 1991Google Scholar
  64. 60.
    Powers, R.T.: Comm.Math.Phys. 21, 85 (1971);MathSciNetCrossRefMATHADSGoogle Scholar
  65. 60a.
    Powers, R.T.: Trans.AMS 187, 261 (1974)MathSciNetMATHGoogle Scholar
  66. 61.
    Fulling, S.A.: Phys.Rev. D 7, 2850 (1973)CrossRefADSGoogle Scholar
  67. 62.
    Haag, R., Narnhofer, H., Stein, U.: Comm. Math. Phys. 94, 219 (1984)MathSciNetCrossRefADSGoogle Scholar
  68. 63.
    Kay, B.S.: contribution to these proceedings and references thereinGoogle Scholar
  69. 64.
    Fredenhagen, K., Haag, R.: Comm.Math.Phys. 108, 91 (1987)MathSciNetCrossRefMATHADSGoogle Scholar
  70. 65.
    Adler, S., Liebermann, J., Ng, Y.J.: Ann.Phys. 106, 279 (1978)CrossRefADSGoogle Scholar
  71. 66.
    Kay, B.S., Wald, R.M.: Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasi-Free States on Spacetime with a Bifurcate Killing Horizon (preprint)Google Scholar
  72. 67.
    Bernard, D.: Phys.Rev. D 33, 3581 (1986)MathSciNetCrossRefADSGoogle Scholar
  73. 68.
    Lüders, C., Roberts, J.E.: Comm. Math. Phys. 134, 29 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  74. 69.
    Fredenhagen, K., Haag, R.: Comm. Math. Phys. 127, 273 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  75. 70.
    Salehi, H.: Ph.D.Thesis Hamburg 1991Google Scholar
  76. 71.
    U. Bannier, U.: Ph.D.Thesis Hamburg 1987Google Scholar
  77. 72.
    Buchholz, D., D’Antoni, C., Fredenhagen, K.: Comm.Math.Phys. 111, 123 (1987)MathSciNetCrossRefMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Klaus Fredenhagen
    • 1
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgGermany

Personalised recommendations