Deriving Nuclei from Quarks

  • S. Pittel
  • J. Engel
  • J. Dukelsky
  • P. Ring
Conference paper


Starting with an effective Hamiltonian for multi-quark systems, we propose a mapping of the quark degrees of freedom onto triplet fermions that represent colorless three-quark clusters. We end up with an effective Hamiltonian for the triplet fermions, which can be treated by traditional nuclear many-body techniques. In this approach, the nuclear ground state represents a quantum liquid of composite particles, the nucleons. Higher-lying states involve both excitations within the space of nucleons and excitations of the nucleons themselves. The method is tested in the context of a schematic model of quarks interacting through an angular momentum and isospin pairing interaction and is shown to be very promising.


Quark Model Ideal Fermion Pairing Strength Nuclear Ground State Quark Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See e.g. European Muon Collaboration, J. Ashman et al, “A Measurement of the Spin Asymmetry and Determination of the Structure Function g 1 in Deep Inleastic Muon-Proton Scattering”, Phys. Lett. 206B, 364 (1988).ADSGoogle Scholar
  2. [2]
    M. Oka and K. Yazaki, “Baryon-Baryon Interaction from Quark-Model Viewpoint”, in: Quarks and Nuclei, ed: W. Weise, (World Scientific, 1985);Google Scholar
  3. [2a]
    A. Faessler, F. Fernandez, C. Lübeck, and K. Shimizu, “The Nucleon-Nucleon Interaction and the Role of the [42] Orbital Six-Quark Symmetry”, Nucl. Phys. A402, 555 (1983).CrossRefGoogle Scholar
  4. [3]
    S. Pittel, J. Engel, J. Dukelsky, and P. Ring, “The Nucleus as a Condensate of Collective Quark Triplets”, Phys. Lett. 247B, 185 (1990).ADSGoogle Scholar
  5. [4]
    S. Pittel, R. Bijker, and J. Dukelsky, “Boson Expansions for Systems of Interacting Bosons”, Phys. Lett. 219B, 5 (1989).ADSGoogle Scholar
  6. [5]
    P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980).Google Scholar
  7. [6]
    E.G. Marshalek, “How Microscopic Boson Models Work”, Nucl. Phys. A347, 253 (1980).CrossRefGoogle Scholar
  8. [7]
    J. Dukelsky and S. Pittel, “Femion Mapping of Boson-Fermion Pairs”, Phys. Rev. C42, 2030 (1990).CrossRefADSGoogle Scholar
  9. [8]
    H.R. Petry, H. Hofestädt, S. Merk, K. Bleuler, H. Bohr, and K.S. Narain, “An Application of QCD in Nuclear Structure”, Phys. Lett. 159B, 363 (1985)ADSGoogle Scholar
  10. [8]
    H. Hofestädt, S. Merk, and H.R. Petry, “The Nucleus as a Multiquark System”, Z. Phys. A326, 391 (1987).ADSGoogle Scholar
  11. [9]
    Y. Suzuki and K.T. Hecht, “Can a Quark Shell Model Lead to Nucleon Clusters?”, Phys. Lett 232B, 195 (1989).Google Scholar
  12. [10]
    A. Arima, K. Yazaki, and H. Bohr, “A Quark Shell Model Calculation of Nuclear Magnetic Moments”, Phys. Lett. 183B, 131 (1987)ADSGoogle Scholar
  13. [10a]
    I. Talmi, “The Nuclear Shell Model —Of Nucleons or Quarks?”, Phys. Lett 205B, 140 (1988).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • S. Pittel
  • J. Engel
    • 1
  • J. Dukelsky
    • 2
  • P. Ring
    • 3
  1. 1.Bartol Research InstituteUniversity of DelawareNewarkUSA
  2. 2.Departamento de Física TeóricaUniversidad Autónoma de MadridSpain
  3. 3.PhysikdepartmentTechnische Universität MünchenGermany

Personalised recommendations