Advertisement

The Scattering Approach to Quantum Electronic Transport

  • Pier A. Mello
Conference paper

Abstract

Some of the efforts to describe the problem of quantum electronic transport through a scattering approach are reviewed. Two-terminal devices are mainly considered. The key object in the scattering approach is the transfer matrix M, whose dimensionality is 2N, N being the number of channels, or transverse modes; M is multiplicative, so that the M for the total system is the product of the M’s of the various scatterers. The various statistical distributions are assumed isotropic, a multichannel generalization of the familiar random-phase model in one dimension. For a given distribution of the n individual M’s, the total M has a distribution that, as n grows, tends to a limit, depending only on one parameter: the elastic mean free path ; the limiting distribution is universal, in the sense that it has a unique form once is specified. One obtains excellent results for the weak-localization correction to the conductance, universal conductance fluctuations, the backscattering enhancement, long-range correlations of reflection or transmission coefficients and time-symmetry breaking by a magnetic field. An attempt to relax the assumption of isotropy, and also an extension to a three-terminal 1-dimensional device are briefly described.

Keywords

Reflection Coefficient Diffusion Equation Transfer Matrix Transmission Coefficient Isotropic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.P. Umbach, S. Washburn, R.B. Laibowitz, and R.A. Webb, Phys. Rev. B 30, 4048 (1984).ADSGoogle Scholar
  2. [2]
    S. Washburn, C.P. Umbach, R.B. Laibowitz, and R.A. Webb, Phys. Rev. B 32, 4789 (1985).ADSGoogle Scholar
  3. [3]
    R.A. Webb, S. Washburn, C.P. Umbach, F.P. Milliken, R.B. Laibowitz, and A.D. Benoit, Physica 140 A, 175 (1986).ADSGoogle Scholar
  4. [4]
    A.D. Benoit, C.P. Umbach, R.B. Laibowitz, and R.A. Webb, Phys. Rev. Lett. 58, 2343 (1987).CrossRefADSGoogle Scholar
  5. [5]
    W.J. Skocpol, P.M. Mankiewick, R.E. Howard, L.D. Jackel, D.M. Ten-nant, and A.D. Stone, Phys. Rev. Lett. 58, 2347 (1987).CrossRefADSGoogle Scholar
  6. [6]
    C.P. Umbach, S. Santhanam, C. Van Hasendonck, and R.A. Webb, Appl. Phys. Lett. 50, 1289 (1987).CrossRefADSGoogle Scholar
  7. [7]
    B.L. Al’tshuler, Pis’ma Zh. Eksp. Teor. Fiz. 41, 530 (1985) [JETP Lett. 41 648 (1985)].Google Scholar
  8. [7a]
    [JETP Lett. 41, 648 (1985)].Google Scholar
  9. [8]
    B.L. Al’tshuler and D.E. Khmel’nitskiĭ, Pis’ma Zh. Eksp. Teor. Fiz. 42, 291 (1985) [JETP Lett. 42, 359 (1986)].Google Scholar
  10. [8a]
    [JETP Lett. 42, 359 (1986)].Google Scholar
  11. [9]
    A.D. Stone, Phys. Rev. Lett. 54, 2692 (1985).CrossRefADSGoogle Scholar
  12. [10]
    P.A. Lee and A.D. Stone, Phys. Rev. Lett. 55, 1622 (1985).CrossRefADSGoogle Scholar
  13. [11]
    B.L. Al’tshuler and B.I. Shklovskiĭ, Zh. Eksp. Teor. Fiz. 91, 220 (1986) [Sov. Phys. JETP 64, 127 (1986)].Google Scholar
  14. [11a]
    [Sov. Phys. JETP 64, 127 (1986)].Google Scholar
  15. [12]
    P.A. Lee, A.D. Stone, and H. Fukuyanna, Phys. Rev. B 35, 1039 (1987).ADSGoogle Scholar
  16. [13]
    S. Feng, C. Kane, P.A. Lee, and A.D. Stone, Phys. Rev. Lett. 61, 834 (1988).CrossRefADSGoogle Scholar
  17. [14]
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).CrossRefADSGoogle Scholar
  18. [15]
    M. Büttiker, Phys. Rev. B 35, 4123 (1987).ADSGoogle Scholar
  19. [16]
    M. Büttiker, IBM J. Res. Develop. 32, 317 (1988).CrossRefGoogle Scholar
  20. [17]
    A.D. Stone and A. Szafer, IBM J. Res. Develop. 32, 384 (1988).CrossRefGoogle Scholar
  21. [18]
    H.U. Baranger, A.D. Stone, and D.P. Di Vincenzo, Rap. Comm. Phys. Rev. B 37, 6521 (1988).ADSGoogle Scholar
  22. [19]
    D.A. Stone, P.A. Mello, K.A. Muttalib, and J.L. Pichard, in Mesoscopic Systems, P. Lee and B. Al’tshuler Eds. (North-Holland), to appear.Google Scholar
  23. [20]
    P.A. Mello, J. Math. Phys. 27, 2876 (1986).CrossRefMATHADSMathSciNetGoogle Scholar
  24. [21]
    P.A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. (N.Y.) 181, 290 (1988).CrossRefADSGoogle Scholar
  25. [22]
    P.A. Mello and B. Shapiro, Phys. Rev. B 37, 5860 (1988).ADSGoogle Scholar
  26. [23]
    P.A. Mello, Phys. Rev. Lett. 60, 1089 (1988).CrossRefADSGoogle Scholar
  27. [24]
    P.A. Mello, E. Akkermans, and B. Shapiro, Phys. Rev. Lett. 61, 459 (1988).CrossRefADSGoogle Scholar
  28. [25]
    P.A. Mello and A.D. Stone, Phys. Rev. B, in press.Google Scholar
  29. [26]
    V.I. Melnikov, Pis’ma Zh. Eksp. Teor. Fiz. 32 244 (1980) [JETP Lett 32 225 (1980)].Google Scholar
  30. [26a]
    [JETP Lett 32 225 (1980)].Google Scholar
  31. [27]
    P.A. Mello and S. Tomsovic, Phys. Rev. Lett., to be published.Google Scholar
  32. [28]
    P.A. Mello and S. Tomsovic, Phys. Rev., to be published.Google Scholar
  33. [29]
    S. Godoy and P.A. Mello, Phys. Rev. Lett., to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Pier A. Mello
    • 1
  1. 1.Instituto de FísicaUNAMMexico

Personalised recommendations