Advertisement

The Decay Process: An Exactly Soluble Example and its Implications

  • Gaston García-Calderón
  • Gerardo Loyola
  • Marcos Moshinsky

Abstract

There is agreement on the exponential decay law for unstable states in a certain range of times but not on what happens for very long or very short times. In particular for the latter a paradox appears from the contradictory results of two very straightforward calculations. To understand the matter better we consider s-states limited by a δ function radial potential of infinite height at a distance r = a. At time t = 0 we lower the height of the δ toa finite value b and obtain in an explicit analytic form the decay amplitude as a function of time in the full interval 0 ≤ t ≤ ∞. Our results support one of the calculations for very short times based on a schematic theory of nuclear reactions.

Keywords

Nuclear Reaction Half Plane Decay Amplitude Compound Particle Delta Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Gamow, Z. Phys. 51, 204 (1928).CrossRefADSGoogle Scholar
  2. [2]
    W. Gurney and E.U. Condon, Phys. Rev. 33, 127 (1929).CrossRefADSGoogle Scholar
  3. [3]
    M. Moshinsky, Phys. Rev. 84, 525 (1951).CrossRefMATHADSMathSciNetGoogle Scholar
  4. [4]
    G. García-Calderón, in these Proceedings. Google Scholar
  5. [5]
    G. Breit and E.P. Wigner, Phys. Rev. 49, 519, 642 (1936).Google Scholar
  6. [6]
    A. Peres, Ann. Phys. (N.Y.) 129, 33 (1980)CrossRefADSMathSciNetGoogle Scholar
  7. [6a]
    Grotza and H.V. Klapdor, Phys. Rev. C 30, 2098 (1984).ADSGoogle Scholar
  8. [7]
    M. Moshinsky, G. Loyola, and J.L. Mateos, “Time dependent model for heavy ion collision with a single resonance”, Proceedings of the XIV Symposium on Nuclear Physics, Oaxtepec, México (World Scientific 1991, Singapore).Google Scholar
  9. [8]
    G. Beck and H.M. Nussenzveig, N. Cimento 16, 441 (1960). See also the contribution of H.M. Nussenzveig in these Proceedings. MathSciNetGoogle Scholar
  10. [9]
    M. Moshinsky, G. Loyola, and C. Villegas, Rev. Mex. Fís. 37, 369 (1991).Google Scholar
  11. [10]
    I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York 1980) p. 931, Formula 8.254.Google Scholar
  12. [11]
    M.L. Goldberger and K.M. Watson, Collision Theory (John Wiley & Sons, New York, 1964) Chapter VIII and in particular p. 450.MATHGoogle Scholar
  13. [12]
    G. García-Calderón and M. Berrondo, Lett. N. Cimento, Serie 2, 26, 562 (1979).CrossRefGoogle Scholar
  14. [13]
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., New York, 1972) p. 297, formula 7.1.4.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Gaston García-Calderón
  • Gerardo Loyola
    • 1
  • Marcos Moshinsky
    • 2
  1. 1.Instituto de FísicaUNAMMéxico
  2. 2.El Colegio NacionalMéxico

Personalised recommendations