Syntactic Analysis of Context—Free Plex Languages for Pattern Recognition

  • Horst Bunke
  • Bernhard Haller


Plex languages are a generalization of string languages into two dimensions. In this paper we describe an algorithm for the syntactic analysis of plex languages. The algorithm is an extension of Earley’s parser which was originally developed for context free string languages. Our algorithm is able to recognize not only complete two—dimensional structures generated by a plex grammar but also partial ones.


Connection Point Derivation Tree Derivation Step Graph Grammar Syntactic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Fu (ed.), Syntactic Pattern Recognition Applications, Springer-Verlag, Berlin, 1977.MATHGoogle Scholar
  2. 2.
    K. S. Fu, Syntactic Pattern Recognition and Applications, Prentice-Hall, Engle- wood Cliffs, NJ, 1982.MATHGoogle Scholar
  3. 3.
    R. C. Gonzales and M. G. Thomason, Syntactic Pattern Recognition, Addison-Wesley, Reading, MA, 1978.Google Scholar
  4. 4.
    L. Miclet, Structural Methods in Pattern Recognition, North-Oxford Academic, 1986.MATHGoogle Scholar
  5. 5.
    H. Bunke and A. Sanfeliu (eds.), “Advances in Syntactic Pattern Recognition,” Special Issue of Pattern Recognition 19, No. 4, 1986.Google Scholar
  6. 6.
    G. Ferrate, T. Pavlidis, A. Sanfeliu, and H. Bunke (eds.): Syntactic and Structural Pattern Recognition, NATO ASI F45, Springer-Verlag, Berlin, 1988.MATHGoogle Scholar
  7. 7.
    H. Bunke and A. Sanfeliu (eds.), Syntactic and Structural Pattern Recognition — Theory and Applications, World Scientific, Singapore, 1990.Google Scholar
  8. 8.
    M. Nagl, “A tutorial and bibliographical survey on graph grammars,” in [9], pp. 70–126.Google Scholar
  9. 9.
    V. Claus, H. Ehrig, and G. Rozenberg (eds.), “Graph-grammars and their application to computer science and biology,” Proc. 1st Int’l Workshop, Lecture Notes Computer Science 73, Springer-Verlag, Berlin, 1979.Google Scholar
  10. 10.
    H. Ehrig, M. Nagl, G. Rozenberg (eds.), “Graph-grammars and their application to computer science,” Proc. 2nd Int’l 7 Workshop, Lecture Notes Computer Science 153, Springer-Verlag, Berlin, 1982.Google Scholar
  11. 11.
    H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, “Graph-grammars and their application to computer science,” Proc. 3rd Int’l Workshop, Lecture Notes Computer Science 291, Springer-Verlag, Berlin, 1987.MATHGoogle Scholar
  12. 12.
    R. Franck, “A class of linearly parsable graph grammars,” Acta Informatica 10, pp. 175–201, 1978.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    M. Kaul, “Syntaxanalyse von Graphen bei Präzedenz-Graph-Grammatiken,” Techn. Report MIP-8610, Univ. Passau, FRG, 1986.Google Scholar
  14. 14.
    M. Kaul, “Computing the minimum error distance of graphs in O(n3) time with precedence graph grammars,” in [6], pp. 69–83.Google Scholar
  15. 15.
    P. Della Vigna and C. Ghezzi, “Context-free graph grammars,” Information and Control 37, pp. 207–233, 1978.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    A. Sanfeliu and K. S. Fu, “Tree graph grammars for pattern recognition,” in [10], pp. 349–368.Google Scholar
  17. 17.
    Q.-Y. Shi and K. S. Fu, “Parsing and translation of (attributed) expansive graph languages for scene analysis,” IEEE Trans. PAMI, PAMI-5, pp. 472–485, 1983.Google Scholar
  18. 18.
    F. J. Brandenburg, “On partially ordered graph grammars,” in [11], pp. 99–111.Google Scholar
  19. 19.
    M. Flasinski, “Parsing of edNLC-grammars for scene analysis,” Pattern Recognition 21, pp. 623–629, 1988.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    C. Lautemann, “Efficient algorithms on context-free graph languages,” In T. Lepistö and A. Salomaa (eds.), Automata, Languages and Programming, Proc. 15th InVl Coll., pp. 362–378, Lecture Notes Computer Science 317, Springer-Verlag, Berlin, 1988.Google Scholar
  21. 21.
    J. Feder, “Plex languages,” Information Sciences 3, pp. 225–241, 1971.CrossRefMathSciNetGoogle Scholar
  22. 22.
    W. C. Lin and K. S. Fu, A syntactic approach to 3D object representation and recognition, TR-EE pp. 84–16, Purdue Univ., West Lafayette, Indiana, June 1984.Google Scholar
  23. 23.
    J. Earley, “An efficient context-free parsing algorithm,” Comm. ACM, Vol. 13, No. 2, pp. 94–102, Feb. 1970.CrossRefMATHGoogle Scholar
  24. 24.
    S. K. Chang et al, Visual programming, Plenum, 1986.Google Scholar
  25. 25.
    W. C. Lin and K. S. Fu, “A syntactic approach to 3-D object representation,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 3, pp. 351–364, May 1984.Google Scholar
  26. 26.
    A. Habel and H.-J. Kreowski, “May we introduce to you: hyperedge replacement,” in [11], pp. 15–26.Google Scholar
  27. 27.
    B. Courcelle, “Some applications of logic of universal algebra and of category theory to the theory of graph transformations,” Bulletin of the EATCS 36, pp. 161–213, 1988.MATHGoogle Scholar
  28. 28.
    B. Haller, “A parser for context-free plex grammars,” Diploma Thesis, Institute of Informatics and Applied Mathematics, Univ. of Bern, Switzerland, 1989 (in German).Google Scholar
  29. 29.
    J. Y.-T. Leung, J. Witthof, and O. Vornberger, “On some variations of the bandwidth minimization problem,” SIAM J. Comp. 13, pp. 650–667, 1984.CrossRefMATHGoogle Scholar
  30. 30.
    A. V. Aho and T. G. Peterson, “A minimum distance error-correcting parser for context-free languages,” SIAM J. Computing, Vol. 1, No. 4, pp. 305–312, Dec. 1972.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    S. Y. Lu and K. S. Fu, “Stochastic error-correcting syntax analysis for recognition of noisy patterns,” IEEE Trans, on Systems, Men, and Cybernetics, Vol. SMC-8, pp. 380–401, 1978.MathSciNetGoogle Scholar
  32. 32.
    H. Bunke and D. Pasche, “Parsing multivalued strings and its application to image and waveform recognition,” In R. Mohr, T. Pavlidis, and A. Sanfeliu (eds.), Structural Pattern Analysis, pp. 1–15, World Scientific, Singapore, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Horst Bunke
    • 1
  • Bernhard Haller
    • 1
  1. 1.Institut für Informatik und Angewandte MathematikUniversität BernBernSwitzerland

Personalised recommendations