Transport in Nb-InGaAs Contacts

  • A. W. Kleinsasser
Conference paper
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 31)


Most contacts between superconductors (S) and semiconductors (Sm) include an insulating Schottky barrier (I), and tnerefore behave as SIN tunnel junctions (N is normal metal). We describe recent experiments which explore the role of such contacts in SSmS (SINIS) weak links. As contact transmittance increases, a crossover occurs from tunneling to metallic behavior, due to a rapid increase in the current contributed by pair-quasiparticle conversion. SSmS devices do not behave simpiv as two SSm contacts in series, due in part to the non-equilibrium nature ot the quasiparticle distribution in the normal material. The two-dimensional geometry of the device structure is also important. The current experimental and theoretical situation and the need for studies of single SSm contacts are discussed.


Weak Link Andreev Reflection Contact Transparency Excess Voltage Quasiparticle Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.W. Kleinsasser and W.J. Gallagher, in Superconducting Devices, S.T. Ruggiero and D.A. , eds., Academic Press, Boston, 1990, p. 325.Google Scholar
  2. 2.
    A.W. Kleinsasser, IEEE Trans, on Magnetics MAG-27, 2589 (1991).CrossRefADSGoogle Scholar
  3. 3.
    M. Ilatano, T. Nishino, and U. Kawabe, Appl. Phys. Lett. 50, 52 (1987).CrossRefADSGoogle Scholar
  4. 4.
    D.R. Ilcslinga, W.M. van Huffelen, T.M. Klapwijk, S.J.M. Bakker, and E.W.J.M. van der Drift, Cryogenics 30, 1009 (1990). A.W. Kleinsasscr, B. Bumble, and T.N. Jackson (unpublished work).Google Scholar
  5. 5.
    T. Nishino, M. Ilatano, and U. Kawabe, Jpn. J. Appl. Phys. 26, Suppl. 26 – 3, 1543 (1987).Google Scholar
  6. 6.
    A. Kastalsky, L.H. Greene, J.B. Earner and R. Bhat, Phys. Rev. Lett. 64, 804 (1990).CrossRefGoogle Scholar
  7. 7.
    T. Nishino, M. Ilatano, H. Hasegawa, T. Kure, and F. Murai, Phys. Rev. B 41, 7274 (1990).CrossRefADSGoogle Scholar
  8. 8.
    K. Inoue and H. Takayanagi, Phys. Rev. B 43, 6214 (1991).CrossRefADSGoogle Scholar
  9. 9.
    A.V. Zaitsev, Sov. Phys. JETP 59, 1015 (1980).Google Scholar
  10. G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982).CrossRefADSGoogle Scholar
  11. 10.
    A.W. Kleinsasscr, T.N. Jackson, D. Mclnturff, F. Rammo, G.D. Pettit, and J.M. Woodall, Appl. Phys. Lett, 55, 1909 (1989).CrossRefADSGoogle Scholar
  12. 11.
    A.W. Kleinsasscr, T.N. Jackson, D. Mclnturff, F. Ramrno, G.D. Pettit, and J.M. Woodall, Appl. Phys. Lett., 57, 1811 (1990).CrossRefADSGoogle Scholar
  13. 12.
    K. Flensberg, J. Bindslev Hansen, and M. Octavio, Phys. Rev. B 38, 8707 (1988).CrossRefADSGoogle Scholar
  14. 13.
    T. M. Klapwijk, in SQUID‘85, W. de Gruyler, Berlin, 1985, p. 1.Google Scholar
  15. 14.
    D.R. Ilcslinga, W.M. van Iluffelen, and T.M. Klapwijk, IEEE Trans, on Magnetics MAG-27, 3264 (1991).CrossRefADSGoogle Scholar
  16. 15.
    W.M. van Iluffelen, T.M. Klapwijk, and L. de Lange (this conference).Google Scholar
  17. 16.
    A. Kastalsky, A.W. Kleinsasscr, L.H. Greene, R. Bhat, F.P. Millikcn, and J.P. Harbison (submitted to Phys. Rev. Lett.).Google Scholar
  18. 17.
    A.W. Kleinsasser (unpublished work).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • A. W. Kleinsasser
    • 1
  1. 1.IBM Research DivisionT.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations