Skip to main content

The Role of Antibody in Herpes Simplex Virus Infection in Humans

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 179))

Abstract

This chapter will attempt to critically analyze the role of antibody in the host’s response to herpes simplex virus (HSV) infection. Although the emphasis will be on the human, where relevant, selected animal data will be included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashe WK, Notkins AL (1967) Kinetics of sensitization of herpes simplex virus and its relationship to the reduction in the neutralization rate constant. Virology 33: 613–617

    Article  PubMed  CAS  Google Scholar 

  • Ashley RL, Corey L (1984) Effect of acyclovir treatment of primary genital herpes on the antibody response to herpes simplex virus. J Clin Invest 73: 681–688

    Article  PubMed  CAS  Google Scholar 

  • Ashley R, Mack R, Critchlow C, Shurtleff M, Corey L (1988) Differential effect of systemic acyclovir treatment of genital HSV-2 infections on antibody responses to individual HSV-2 proteins. J Med Virol 24: 309–320

    Article  PubMed  CAS  Google Scholar 

  • Balachandran N, Bacchetti S, Rawls WE (1982) Protection against lethal challenge of BalB/C mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun 37:1132–1137

    PubMed  CAS  Google Scholar 

  • Baron S, Worthingon MG, Williams J, Gaines JW (1976) Post exposure serum prophylaxis of neonatal herpes simplex virus infection of mice. Nature 261: 505–506

    Article  PubMed  CAS  Google Scholar 

  • Bernstein Dl, Lovett MA, Bryson YJ (1984) The effects of acyclovir on antibody response to herpes simplex virus in primary genital herpetic infections. J Infect Dis 150: 7–13

    Article  PubMed  CAS  Google Scholar 

  • Biron CA, Bryon KS, Sullivan JL (1989) Severe herpes virus infections in an adolescent without natural killer cells. N Eng J Med 320:1731–1735

    Article  CAS  Google Scholar 

  • Blacklaws BA, Krishna S, Minson AC, Nash AA (1990) Immunogenicity of herpes simplex virus type 2 glycoproteins expressed in vaccinia virus recombinants. Virology 177: 727–736

    Article  PubMed  CAS  Google Scholar 

  • Blacklaws BA, Nash AA, Darby G (1987) Specificity of the immune response of mice to herpes simplex virus glycoprotein B and D constituitively expressed on L cell lines. J Gen Virol 68:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Brown ZA, Benedetti J, Ashley R, Burchett S, Selke S, Berry S, Vontver LA, Corey L (1991) Neonatal herpes simplex virus infection in relation to asymptomatic maternal infection at the time of labor Engl J Med 324: 1247–1252

    Article  CAS  Google Scholar 

  • Brunell PA, Ross A, Miller LH, Kuo B (1969) Prevention of varicella by zoster immunoglobulin. N Engl J Med 280:1191–1194

    Article  PubMed  CAS  Google Scholar 

  • Conley ME, Park CL, Douglas SD (1986) Childhood common variable immunodeficiency with auto-immune disease, J Pediatr 108: 915–922

    Article  PubMed  CAS  Google Scholar 

  • Corey L, Adams HG, Brown ZA, Holmes KK (1983) Genital herpes simplex virus infections, clinical manifestations, course, and complications. Ann Intern Med 98: 958–972

    PubMed  CAS  Google Scholar 

  • Davis WB, Taylor JA, Oakes JE (1979) Ocular infection with herpes simplex virus type 1: prevention of acute herpetic encephalitis by systemic administration of virus specific antibody. J Infect Dis 140: 534–540

    Article  PubMed  CAS  Google Scholar 

  • Dix RD, Pereira L, Baringer JR (1981) Use of monoclonal antibody directed against herpes simplex virus glycoproteins to protect mice against acute virus-induced neurological disease. Infect Immun 34: 192–199

    PubMed  CAS  Google Scholar 

  • Erlich KS, Hauer L, Mills J (1988) Effects of long-term acyclovir chemosuppression on serum IgG anti-body to herpes simplex virus. J Med Virol 26: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Frenkel L, Pineda E, Garratty E, Fall H, Dilon M, Bryson Y (1989) A perspective study of the effects of acyclovir treatment on the HSV-2 lymphoproliferative response of persons with frequently recurring HSV-2 genital infection. J Infect Dis 159: 845–850

    Article  PubMed  CAS  Google Scholar 

  • Geiser CF, Bishop Y, Myers M, Jaffe N, Yankee R (1975) Prophylaxis of varicella in children with neoplastic disease: comparative results with zoster immune plasma and gamma globulin. Cancer 35: 1027–1030

    Article  PubMed  CAS  Google Scholar 

  • Georgiades JA, Montgomery J, Hughes TK, Jensen D, Baron S (1982) Determinants of protection by human immune globulin against experimental herpes neonatorum. Proc Soc Exp Biol Med 170:291–297

    PubMed  CAS  Google Scholar 

  • Gershon AA, Steinberg S, Brunell PA (1974) Zoster immune globulin. A further assessment. N Engl J Med 290: 243–245

    Article  PubMed  CAS  Google Scholar 

  • Gold D, Ashley R, Solberg G, Abbo H, Corey L (1988) Chronic-dose acyclovir to suppress frequently recurring genital herpes simplex virus infection: effect on antibody response to herpes simplex virus type 2 proteins. J Infect Dis 158: 1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Greenberg MS, Friedman H, Cohen SG, Oh SH, Laster L, Starr S (1987) A comparative study of herpes simplex infections in renal transplant and leukemic patients. J Infect Dis 156: 280–287

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Wada T, Mori R (1983) Protection of newborn mice against herpes simplex virus infection by prenatal and postnatal transmission of antibody. J Gen Virol 64:1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Hayashida I, Nagafuchi S, Hayashi Y, Kino Y, Mori R, Oda H, Ohtomo N, Tashiro A (1982) Mechanism of antibody-mediated protection against herpes simplex virus infection in athymic nude mice: Requirement of Fc portion of antibody. Microbiol Immunol 26: 497–509

    PubMed  CAS  Google Scholar 

  • Kahlon J, Whitley RJ (1988) Antibody response of the newborn after herpes simplex virus infection. J Infect Dis 158: 925–933

    Article  PubMed  CAS  Google Scholar 

  • Kilbourne EM, Horsfall FL Jr (1951) Studies of herpes simplex virus in newborn mice. J Immunol 67: 321–329

    PubMed  CAS  Google Scholar 

  • Kino Y, Eto T, Ohtomo N, Hayashi Y, Yamamoto M, Mori R (1985) Passive immunization of mice with monoclonal antibodies to glycoprotein gB of herpes simplex virus. Microbiol Immunol 29:143–149

    PubMed  CAS  Google Scholar 

  • Kohl S (1987) Postnatal herpes simplex virus infections. In: Feigin RD, Cherry JD (eds) Textbook of pediatric infectious diseases, 2nd. Saunders, Philadelphia, pp 1577–1601

    Google Scholar 

  • Kohl S (1990) A hypothesis on the pathophysiology of neonatal herpes simplex virus encephalitis: clinical recurrence after asymptomatic primary infection. Pediatr Infect Dis J 9: 307–308

    Article  PubMed  CAS  Google Scholar 

  • Kohl S (1991) Role of antibody-dependent cellular cytotoxicity in defense against herpes simplex virus infection. Rev Infect Dis 13:108–114

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Erisson CD (1982) Cellular cytotoxocity to herpes simplex virus-infected cells of leukocytes from patients with serious burns. Clin Immunol Immunopathol 24:171–178

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Loo LS (1982) Protection of neonatal mice against herpes simplex virus infection. Probable in vivo antibody-dependent cellular cytoxocity. J Immunol 129: 370–376

    PubMed  CAS  Google Scholar 

  • Kohl S, Loo LS (1984) The relative role of transplacental and milk immune transfer in protection against lethal neonatal herpes simplex virus infection in mice. J Infect Dis 149: 38–42

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Shaban SS, Starr SE, Wood PA, Nahmias AJ (1978) Human neonatal and maternal monocyte-macrophage and lymphocyte-mediated antibody-dependent cytotoxicity to cells infected with herpes simplex. J Pediatr 93: 206–210

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Loo LS, Pickering LK (1981) Protection of neonatal mice against herpes simplex viral infection by human antibody and leukocytes from adult but not neonatal humans. J Immunol 127:1273–1275

    PubMed  CAS  Google Scholar 

  • Kohl S, Loo LS, Gonick B (1984) Analysis in human neonates of defective antibody-dependent cellular cytotoxicity and natural killer cytotoxicity to herpes simplex virus-infected cells. J Infect Dis 150: 14–19

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Loo LS, Schmalstieg FS, Anderson DC (1986) The genetic deficiency of leukocyte surface glycoprotein Mac-1, LFA-1, p150, 95 in humans in associated with defective antibody-dependent cellular cytotoxicity in vitro and defective protection against herpes simplex virus infection in vivo. J Immunol 137:1688–1694

    PubMed  CAS  Google Scholar 

  • Kohl S, Loo LS, Rench MA, Noya FSD, Feldman S, Baker CJ (1989a) Effect of intravenously administered immune globulin on functional antibody to herpes simplex virus in low birth weight neonates. J Pediatr 115:135–139

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, West MS, Prober CG, Loo LS, Sullander W, Arvin AM (1989b) Neonatal antibody-dependent cellular cytotoxicity antibody levels are associated with the clinical presentation of neonatal herpes simplex virus infection. J Infect Dis 160: 770–776

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Strynadka NCJ, Hodges RS, Pereira L (1990) Analysis of the role of antibody-dependent cellular cytotoxicity antibody activity in murine neonatal herpes simplex virus infection with antibodies to synthetic peptides of glycoprotein D and monoclonal antibodies to glycoprotein B. J Clin Invest 86: 273–278

    Article  PubMed  CAS  Google Scholar 

  • Lafferty WE, Brewer LA, Corey L (1984) Alteration of lymphocyte transformation response to herpes simplex virus by acyclovir therapy. Antimicrob Agents Chemother 26: 887–891

    PubMed  CAS  Google Scholar 

  • Levin MJ, Leary PL, Arbeit RD (1980) Effect of acyclovir on the proliferation of human fibroblasts and peripheral blood mononuclear cells. Antimicrob Agents Chemother 17: 947–953

    PubMed  CAS  Google Scholar 

  • Linneman CC Jr, May DB, Schubert WK, Caraway CT, Schiff GM (1973) Fatal viral encephalitis in children with X-linked hypogammaglobulinemia. Am J Dis Child 126: 100–103

    Google Scholar 

  • Ljungman P, Wilizek H, Gahrton G, Gustavsson A, Lundgren G, Lonnqvist B, Ringden O, Wahren B (1986) Long-term acyclovir prophylaxis is bone marrow transplant recipients and lymphocyte proliferation responses to herpes virus antigens in vitro. Bone Marrow Transplant 1:185–192

    PubMed  CAS  Google Scholar 

  • Lopez C, O’Reilly RJ (1977) Cell-mediated immune responses in recurrent herpes virus infections. J Immunol 118: 895–902

    PubMed  CAS  Google Scholar 

  • Luyet F, Samra D, Soneji A, Marks Ml (1975) Passive immunization in experimental herpes virus hominis infection of newborn mice. Infect Immun 12:1258–1261

    PubMed  CAS  Google Scholar 

  • McKendall RR (1985) IgG-mediated viral clearance in experimental infection with herpes simplex virus type 1: role for neutralization and Fc-dependent functions but not CI cytolysis and C5 chemotaxis. J Infect Dis 151: 464–470

    Article  PubMed  CAS  Google Scholar 

  • McKendall RR, Klassen T, Baringer JR (1979) Host defenses in herpes simplex infections of the nervous system: Effect of antibody on disease and viral spread. Infect Immun 23: 305–311

    PubMed  CAS  Google Scholar 

  • Mester JC, Glorioso JC, Rouse BT (1991) Protection against zosteriform spread of herpes simplex virus by monoclonal antibodies. J Infect Dis 163: 263–269

    Article  PubMed  CAS  Google Scholar 

  • Nahmias AJ, Josey WE, Naib ZM, Freeman MG, Fernandez RJ, Wheeler JH (1971) Perinatal risk associated with maternal genital herpes simplex virus infection. Am J Obstet Gynecol 110: 825–837

    PubMed  CAS  Google Scholar 

  • Oakes JE, Lausch RN (1981) Role of Fc fragment in antibody-mediated recovery from ocular and subcutaneous herpes simplex virus infections. Infect Immun 33:109–114

    PubMed  CAS  Google Scholar 

  • Oakes JE, Rosemond-Hornbeak H (1978) Antibody-mediated recovery from subcutaneous herpes simplex virus type 2 infection. Infect Immun 21: 489–495

    PubMed  CAS  Google Scholar 

  • Oakes JE, Davis WB, Taylor JA, Weppner WA (1980) Lymphocyte reactivity contributes to protection conferred by specific antibody passively transferred to herpes simplex virus-infected mice. Infect Immun 29: 642–649

    PubMed  CAS  Google Scholar 

  • Ogra SS, Weintraub D, Ogra PL (1977) Immunologic aspects of human colostrum and milk. III. Fate and adsorption of cellular and soluble components in the gastrointestinal tract of the newborn. J Immunol 119: 245–248

    PubMed  CAS  Google Scholar 

  • Oh SH, Douglas JM, Corey L, Kohl S (1989) Kinetics of the humoral immune response measured by antibody-dependent cell-mediated cytotoxicity and neutralization assays in genital herpes simplex infections. J Infect Dis 159: 328–330

    Article  PubMed  CAS  Google Scholar 

  • Olson NY, Hall JC (1987) Chronic cutaneous herpes simplex and X-linked hypogammaglobulinemia. Pediatr Dermatol 4: 225–228

    Article  PubMed  CAS  Google Scholar 

  • Openshaw H, Asher LVS, Wohlenberg C, Sekizawa T, Notkins AL (1979) Acute and latent infection of sensory ganglia with herpes simplex virus: immune control and virus reactivation. J Gen Virol 44:205–215

    Article  PubMed  CAS  Google Scholar 

  • Orenstein WA, Heymann DL, Ellis RJ, Rosenberg RL, Nakano J, Halsey NA, Overturf GD, Hayden GF, Witte JS (1981) Prophylaxis of varicella in high risk children: dose-response effect of zoster immune globulin. J Pediatr 98: 368–373

    Article  PubMed  CAS  Google Scholar 

  • Pass RF, Whitley RS, Whelchel JD, Diethelm AG, Reynolds DW, Alford CA (1979) Identification of patients with increased risk of infection with herpes simplex virus after renal transplantation. J Infect Dis 140: 487–492

    Article  PubMed  CAS  Google Scholar 

  • Prober CG, Sullender WM, Yasukawa LL, Au DS, Yeager AS, Arvin AM (1987) Low risk of herpes simplex virus infection in neonates exposed to the virus at the time of vaginal delivery to mothers with recurrent genital herpes simplex virus infection. N Engl J Med 316: 240–244

    Article  PubMed  CAS  Google Scholar 

  • Rager-Zisman B, Allison AC (1976) Mechanism of immunologic resistance to herpes simplex virus 1 (HSV-1) infection. J Immunol 116: 35–40

    PubMed  CAS  Google Scholar 

  • Rector JT, Lausch RN, Oakes JE (1982) Use of monoclonal antibodies for analysis of antibody-dependent immunity to ocular herpes simplex virus type 1 infection. Infect Immun 38:168–174

    PubMed  CAS  Google Scholar 

  • Rector JT, Lausch RN, Oakes JE (1984) Identification of infected cell-specific monoclonal antibodies, and their role in host resistance to ocular herpes simplex virus type 1 infection. J Gen Virol 65: 657–666

    Article  PubMed  Google Scholar 

  • Sekizawa T, Openshaw H, Wohlenberg C, Notkins AL (1980) Latency of herpes simplex virus in absence of neutralizing antibody: Model for reactivation. Science 210:1026–1028

    Article  PubMed  CAS  Google Scholar 

  • Shore SL, Black CM, Melewicz FM, Wood PA, Nahmias AJ (1976) Antibody-dependent cell mediated cytotoxicity to target cells infected with type 1 and type 2 herpes simplex virus. J Immunol 116: 194–201

    PubMed  CAS  Google Scholar 

  • Shore SL, Melewicz FM, Gordon DS (1977a) The mononuclear cell in human blood which mediates antibody dependent cellular cytotoxicity to virus-infected target cells: I. Identification of the population of effector cells. J Immunol 118: 558–566

    PubMed  CAS  Google Scholar 

  • Shore SL, Milgrom H, Wood P, Nahmias AJ (1977b) Neonatal function of antibody-dependent cell-mediated cytotoxicity to target cells infected with herpes simplex virus. Pediatrics 59: 22–28

    PubMed  CAS  Google Scholar 

  • Simmons A, Nash AA (1985) Role of antibody in primary and recurrent herpes simplex virus infection. J Virol 53: 944–948

    PubMed  CAS  Google Scholar 

  • Smith RN, Hanna L (1974) Herpes virus infections in pregnancy: a comparison of neutralizing antibody titers in mothers and their infants. Am J Obstet Gynecol 119: 314–318

    PubMed  CAS  Google Scholar 

  • Snydman DR (1990) Cytomegalovirus immunoglobulins in the prevention and treatment of cyto-megalovirus disease. Rev Infect Dis 12: S839-S848

    Article  PubMed  Google Scholar 

  • Steele RW, Marmer DJ, Keeney RE (1980) Comparative in vitro immunotoxicology of acyclovir and other antiviral agents. Infect Immun 28: 957–962

    PubMed  CAS  Google Scholar 

  • Stevens JG, Cook ML (1974) Maintenance of latent herpetic infection: an apparent role for anti-viral IgG. J Immunol 113:1685–1693

    PubMed  CAS  Google Scholar 

  • Strulovitch C, Marks Ml, Soneji A, Goldberg S (1979) Immunotherapy and drugs in neonatal disseminated herpes simplex virus type 2: a mouse model. J Antimicrob Chemother 5: 437–446

    Article  PubMed  CAS  Google Scholar 

  • Sullender WM, Miller JL, Yasukawa LL, Bradley JS, Black SB, Yeager AS, Arvin AM (1987) Humoral and cell-mediated immunity in neonates with herpes simplex virus infection. J Infect Dis 155: 28–37

    Article  PubMed  CAS  Google Scholar 

  • Sullender WM, Yasukawa LL, Schwartz M, Pereira L, Hensleigh PA, Prober CG, Arvin AM (1988) Type-specific antibodies to herpes simplex virus type 2 (HSV-2) glycoprotein G in pregnant women, infants exposed to maternal HSV-2 infection at delivery, and infants with neonatal herpes. J Infect Dis 157:164–171

    Article  PubMed  CAS  Google Scholar 

  • Thong YH, Vincent MM, Hensen SA, Fuccillo DA, Rola-Pleszczynski M, Bellanti JA (1975) Depressed specific cell-mediated immunity to herpes simplex virus type 1 in patients with recurrent herpes labialis. Infect Immun 12: 76–80

    PubMed  CAS  Google Scholar 

  • Wade JC, Day LM, Crowley JJ, Meyers JD (1984a) Recurrent infection with herpes simplex virus after marrow transplantation: role of the specific immune response and acyclovir treatment. J Infect Dis 149: 750–756

    Article  PubMed  CAS  Google Scholar 

  • Wade JC, Newton B, Flournoy N, Meyers JD (1984b) Oral acyclovir for prevention of herpes simplex virus reactivation after marrow transplantation. Ann Intern Med 100: 823–828

    PubMed  CAS  Google Scholar 

  • Whitley RJ, Nahmias AJ, Visintine AM, Fleming CL, Alford CA (1980) The natural history of herpes simplex virus infection of mother and newborn. Pediatrics 66: 489–494

    PubMed  CAS  Google Scholar 

  • Whitley RJ, Yeager A, Kartus B, Bryson Y, Connor JD, Alford CA, Nahmias A, Soong S-J (1983) Neonatal herpes simplex virus infection: follow-up evaluation of Vidarabine therapy. Pediatrics 72: 778–785

    PubMed  CAS  Google Scholar 

  • Whitley RJ, Corey L, Arvin A, Lakeman FD, Sumaya CV, Wright PF, Dunkle LM, Steele RW, Soong SJ, Nahmias AJ, Alford CA, Powell DA, San Joquin V (NIAID Collaborative Antiviral Study Group) (1988). Changing presentation of herpes simplex virus infection in neonates. J Infect Dis 158:109–116

    Article  PubMed  CAS  Google Scholar 

  • Willey DE, Cantin EM, Hill LR, Moss B, Notkins AL, Openshaw H (1988) Herpes simplex virus type 1-vaccinia recombinant expressing glycoprotein B: protection from acute and latent infection. J Infect Dis 158: 1382–1386

    Article  PubMed  CAS  Google Scholar 

  • Wilton JMA, Ivanyi L, Lehner T (1972) Cell-mediated immunity in herpes virus hominis infections. Br Med J 1: 723–726

    Article  PubMed  CAS  Google Scholar 

  • Winston DJ, How G, Lin CH, Bartoni K, Budinger MD, Gale RP, Champlin RE (1987) Intravenous immune globulin for prevention of cytomegalovirus infection and interstitial penumonia after bone marrow transplantation. Ann Intern Med 106: 12–18

    PubMed  CAS  Google Scholar 

  • Yeager AS, Arvin AM, Urbani LJ, Kemp JA (1980) Relationship of antibody to outcome in neonatal herpes simplex virus infections. Infect Immun 29: 532–538

    PubMed  CAS  Google Scholar 

  • Yeager AS, Grumet FC, Hafleigh EB, Arvin AM, Bradley JE, Prober CG (1981) Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J Pediatr 98: 281–287

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Kohl, S. (1992). The Role of Antibody in Herpes Simplex Virus Infection in Humans. In: Rouse, B.T. (eds) Herpes Simplex Virus. Current Topics in Microbiology and Immunology, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77247-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77247-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77249-8

  • Online ISBN: 978-3-642-77247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics