Skip to main content

Controlling Herpes Simplex Virus Infections: is Intracellular Immunization the Way of the Future?

  • Chapter
Herpes Simplex Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 179))

Abstract

The available approaches to the management of herpes simplex virus (HSV) infections currently consist primarily of chemotherapy and the possibility of preventive vaccination. In this review, we explore the potential of a third approach based on recent advances in molecular biology and genetic engineering which renders cells resistant to viral infection. This form of antiviral gene therapy, termed “intracellular immunization” by Baltimore (1988), involves the intracellular expression of a variety of molecular species specifically designed to inhibit targeted virus replication. The utility of such an approach lies in the direct application of knowledge pertaining to molecular mechanisms involved in viral pathogenesis to precisely interrupt lytic infection through the generation of virus-resistant cells. Such strategies may be particularly useful in the management of intracel-lular pathogens which are capable of evading the immune system or in circumstances in which knowledge of molecular pathogenic mechanisms far surpasses the ability to develop appropriate therapeutic drugs or vaccines. In this article, the basic concepts of intracellular immunization, relevant aspects of HSV molecular biology, and studies utilizing antiviral gene therapy to prevent HSV infection will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen ND, Cran DG, Barton SC, Hettle S, Reik R, Surani MAH (1988) Transgenes as probes for active chromosomal domains in mouse development. Nature 333: 852–855

    Article  PubMed  CAS  Google Scholar 

  • Anderson WF (1984) Prospects for human gene therapy. Science 226: 401–409

    Article  PubMed  CAS  Google Scholar 

  • Andreason GL, Evans GA (1988) Introduction and expression of DNA moleculesin eukaryotic cells by electroporation. BioTechniques 6: 650–660

    PubMed  CAS  Google Scholar 

  • Anheiter H, Skuntz S, Noteborn M, Chang S, Meier E (1990) Transgenic mice with intracellular immunity to influenza virus. Cell 62: 51–61

    Article  Google Scholar 

  • Baltimore D (1988) Intracellular immunization. Nature 335: 395–396

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Bednarik DP, Mosca JD, Raj NBK, Pitha PM (1989) Inhibition of human immunodeficiency virus (HIV) replication by HIV-trans-activated alpha-2 interferon. Proc Natl Sci USA 86: 4958–4962

    Article  CAS  Google Scholar 

  • Benko DM, Robinson R, Solomin L, Mellini M, Felber BK, Pavlakis GN (1990) Binding of trans-dominant mutant rev protein of human immunodeficiency virus type 1 to the cis-acting rev-responsive element does not affect the fate of viral mRNA. New Biologist 2:1111–1122

    PubMed  CAS  Google Scholar 

  • Berns Kl, Bohenzky RA (1987) Adeno-associated viruses: an update. Adv Virus Res 32: 243–306

    Article  PubMed  CAS  Google Scholar 

  • Berns Kl, Pinkerton TC, Thomas GF, Hoggan MD (1975) Detection of adeno-associated virus (AAV)-speeifie nucleotide sequences in DNA isolated from latently infected Detroit 6 cells. Virology 68: 556–560

    Article  PubMed  CAS  Google Scholar 

  • Bohnlein S, Pirker FP, Hofer L, Zimmermann K, Bachmayer H, Bohnlein E, Hauber J (1991) Trans-dominant repressors for human T-cell leukemia virus type I rex and human immunodeficiency virus type 1 rev function. J Virol 65: 81–88

    PubMed  CAS  Google Scholar 

  • Breman JG, Arita I (1980) The confirmation and maintenance of smallpox eradication. N Engl J Med 303: 1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Buonocore L, Rose JK (1990) Prevention of HIV-1 glycoprotein transport by soluble CD4 retained in the endoplasmic reticulum. Nature 345: 625–628

    Article  PubMed  CAS  Google Scholar 

  • Cameron FH, Jennings PA (1989) Specific gene suppression by engineered ribozymes in monkey cells. Proc Natl Acad Sci USA 86: 9139–9143

    Article  PubMed  CAS  Google Scholar 

  • Cech TR (1988) Ribozymes and their medical implications. J Am Med Assoc 260: 3030–3034

    Article  CAS  Google Scholar 

  • Cech TR, Bass BL (1986) Biological catalysis by RNA. Annu Rev Biochem 55: 599–629

    Article  PubMed  CAS  Google Scholar 

  • Chang L-J, Stoltzfus CM (1985) Gene expression from both intronless and intron-containing Rous sarcoma virus clones is specifically inhibited by anti-sense RNA. Mol Cell Biol 5: 2341–2348

    PubMed  CAS  Google Scholar 

  • Chang L-J, Stoltzfus CM (1987) Inhibition of Rous sarcoma virus replication by antisense RNA. J Virol 61:921–924

    PubMed  CAS  Google Scholar 

  • Chatterjee S, Rose JA, Johnson PR, Wong KK Jr (1991) Transduction of intracellular resistance to HIV production by an adeno-associated virus-based antisense vector. Vaccine 91: 85–90

    Google Scholar 

  • Cohen EA, Gaudreau P, Brazeau P, Langelier Y (1986) Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature 321:441–443

    Article  PubMed  CAS  Google Scholar 

  • Coleman J, Hirashima A, Inokuchi Y, Green PJ, Inouye M (1985) A novel immune system against bacteriophage infection using complementary RNA (micRNA). Nature 315: 601–603

    Article  PubMed  CAS  Google Scholar 

  • Cotton M, Birnstiel ML (1989) Ribozyme mediated destruction of RNA in vivo. EMBO J 8: 3861–3866

    Google Scholar 

  • Cukor G, Blacklow NR, Hoggan D, Berns Kl (1984) Biology of adeno-associated virus. In: Berns Kl (ed) The Parvoviruses. Plenum, New York, pp 33–66

    Google Scholar 

  • Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief C, Berns A (1984) Murine leukemia virus-induced T-cell lymphomagensis: integration of proviruses in a distinct chromosomal region. Cell 37:141–150

    Article  PubMed  CAS  Google Scholar 

  • Dalgleish AG, Beverley PCI, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763–767

    Article  PubMed  CAS  Google Scholar 

  • Domke I, Straub P, Kirchner H (1986) Effect of interferon on replication of herpes simplex virus type 1 and 2 in human macrophages. J Virol 60: 37–42

    Google Scholar 

  • Dutia BM, Frame MC, Subak-Sharpe JH, Clark WN, Marsden HS (1986) Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature 321: 439–441

    Article  PubMed  CAS  Google Scholar 

  • Eglitis MA, Anderson WF (1988) Retroviral vectors for introduction of genes into mammalian cells. BioTechniques 6: 608–614

    PubMed  CAS  Google Scholar 

  • Faraji-Shadan F, Stubbs JD, Bowman PD (1990) A putative approach for gene therapy against human immunodeficiency virus (HIV). Med Hypotheses 32: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Holland EC (1988) HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334: 165–167

    Article  PubMed  CAS  Google Scholar 

  • Friedman AD, Triezenberg SJ, McKnight SL (1988) Expression of a truncated viral trans-activator selectively impedes lytic infection by its cognate virus. Nature 335: 452–454

    Article  PubMed  CAS  Google Scholar 

  • Gao W-Y, Stein CA, Cohen JS, Dutschman GE, Cheng Y-C (1989) Effect of phosphorothioate homooligodeoxynucleotides on herpes simplex virus type 2 induced DNA polymerase. J Biol Chem 264:11521–11526

    PubMed  CAS  Google Scholar 

  • Gao W-Y, Hanes RN, Vazquez-Padua MA, Stein CA, Cohen JS, Cheng Y-C (1990) Inhibition of herpes simplex virus type 2 growth by phosphorothioate oligodeoxynucleotides. Antimicrob Agents Chemother 34: 808–812

    PubMed  CAS  Google Scholar 

  • Goldstein DJ, Weller SK (1988) Factor(s) present in herpes simpJex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology 166: 41–51

    Article  PubMed  CAS  Google Scholar 

  • Goodchild J, Agrawal S, Civiera MP, Sarin PS, Sun D, Zamecnik PC (1988) Inhibition of human immunodeficiency virus replication by antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 85: 5507–5511

    Article  PubMed  CAS  Google Scholar 

  • Graham GJ, Maio JJ (1990) RNA transcripts of the human immunodeficiency virus transactivation response element can inhibit action of the viral transactivator. Proc. Natl Acad Sci USA 87: 5817–5821

    Article  PubMed  CAS  Google Scholar 

  • Green M, Ishino M, Loewenstein PM (1989) Mutational analysis of HIV-1 tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell 58: 215–223

    Article  PubMed  CAS  Google Scholar 

  • Green PJ, Pines O, Inouye M (1986) The role of antisense RNA in gene regulation. Annu Rev Biochem 55: 569–97

    Article  PubMed  CAS  Google Scholar 

  • Gresser I (1986) Interferon-induced diseases. In: Notkins AL, Oldstone MBA (eds) Concepts in viral pathogenesis II. Springer, Berlin Heidelberg New York, pp 232–242

    Google Scholar 

  • Haigh A, Greaves R, O’Hare P (1990) Interference with the assembly of a virus-host transcription complex by peptide competition. Nature 334: 257–259

    Article  Google Scholar 

  • Hartung S, Jaenisch R, Breindl M (1986) Retrovirus insertion inactivates mouse al(l) collagen gene by blocking initiation of transcription. Nature 320: 365–367

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334: 585–591

    Article  PubMed  CAS  Google Scholar 

  • Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290: 475–480

    Article  PubMed  CAS  Google Scholar 

  • Helene C, Toulme J-J (1990) Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta 1049: 99–125

    PubMed  CAS  Google Scholar 

  • Hermonat PL, Muzyczka N (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 81: 6466–6470

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Jenner E (1798) An inquiry into the causes and effects of the variolae vaccine, a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of cowpox. Sampson Low, London

    Google Scholar 

  • Jennings PD, Molloy PL (1987) Inhibition of SV40 replicon function by engineered antisense RNA transcribed by RNA polymerase III. EMBO J 10: 3043–3047

    Google Scholar 

  • Johnson RM, Spear PG (1989) Herpes simplex virus glycoprotein D mediates interference with herpes simplex virus infection. J Virol 63: 819–827

    PubMed  CAS  Google Scholar 

  • Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman J-C, Montagnier L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312: 767–768

    Article  PubMed  CAS  Google Scholar 

  • Kotin RM, Berns Kl (1989) Organization of adeno-associated virus DNA in latently infected Detroit 6 cells. Virology 170: 460–467

    Article  PubMed  CAS  Google Scholar 

  • Kotin RM, Siniscalco M, Samulski RJ, Zhu X, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns Kl (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 87:2211–2215

    Article  PubMed  CAS  Google Scholar 

  • Kulka M, Smith CC, Aurelian L, Fishelevich R, Meade K, Miller P, Ts’o POP (1989) Site specificity of the inhibitory effects of oligo (nucleoside methylphosphonate)s complementary to the acceptor splice junction of herpes simplex virus type 1 immediate early mRNA 4. Proc Natl Acad Sci USA 86: 6868–6872

    Article  PubMed  CAS  Google Scholar 

  • LaFace D, Hermonat P, Wakeland E, Peck A (1988) Gene transfer into hematopoietic progenitor cells mediated by an adeno-associated virus vector. Virology 162: 483–486

    Article  PubMed  CAS  Google Scholar 

  • Lebkowski JS, McNally MM, Okarma TB, Lerch LB (1988) Adeno-associated virus: a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Mol Cell Biol 8: 3988–3996

    PubMed  CAS  Google Scholar 

  • Lisziewicz J, Rappaport J, Dhar R (1991) Tat-regulated production of multimerized TAR RNA inhibits HIV-1 gene expression. New Biologist 3: 82–89

    PubMed  CAS  Google Scholar 

  • Malim MH, Bohnlein S, HaubĂ©r J, Cullen BR (1989) Functional dissection of the HIV-1 rev trans-activator: derivation of a trans-dominant repressor of rev function. Cell 58: 205–214

    Article  PubMed  CAS  Google Scholar 

  • Mavromara-Nazos P, Ackermann M, Roizman B (1986) Construction and properties of viable herpes simplex virus type 1 recombinant lacking coding sequences of the α47 gene. J Virol 60: 807–812

    PubMed  CAS  Google Scholar 

  • Mermer B, Felber BK, Campbell M, Pavlakis GN (1990) Identification of trans-dominant HIV-1 rev protein mutants by direct transfer of bacterially produced proteins into human cells. Nucleic Acids Res 18: 2037–2044

    Article  PubMed  CAS  Google Scholar 

  • Mannino RJ, Gould-Fogerite S (1988) Liposome mediated gene transfer. BioTechniques 6: 682–690

    PubMed  CAS  Google Scholar 

  • McClements W, Yamanaka G, Garsky V, Perry H, Bacchetti S, Colonno R, Stein RB (1988) Oligopeptides inhibit the ribonucleotide reductase of herpes simplex virus by causing subunit separation. Virology 162: 270–273

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin SK, Collis P, Hermonat PL, Muzyczka N (1988) Adeno-associated virus general transduction vectors: analysis of proviral structures. J Virol 62:1963–1973

    PubMed  CAS  Google Scholar 

  • Miller AD (1990) Progress toward human gene therapy. Blood 76: 271–278

    PubMed  CAS  Google Scholar 

  • Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10: 4239–4242

    PubMed  CAS  Google Scholar 

  • Miroshnichenko Ol, Ponomareva Tl, Tikchonenko Tl (1989) Inhibition of adenovirus 5 replication in COS-1 cells by antisense RNAs against the viral Ela region. Gene 84: 83–89

    Article  PubMed  CAS  Google Scholar 

  • Mittnacht S, Straub P, Kirschner H, Jacobsen H (1988) Interferon treatment inhibits onset of herpes simplex virus immediate-early transcription. Virology 164: 201–210

    Article  PubMed  CAS  Google Scholar 

  • Morgan RA, Looney DJ, Muenchau DD, Wong-Staal F, Gallo RC, Anderson WF (1990) Retroviral vectors expressing soluble CD4: a potential gene therapy for AIDS. AIDS Res Hum Retroviruses 6:183–191

    Article  PubMed  CAS  Google Scholar 

  • Paradis H, Gaudreau P, Brazeau P, Langelier Y (1988) Mechanisms of inhibition of herpes simplex virus (HSV) ribonucleotide reductase by a nonapeptide corresponding to the carboxyl terminus of its subunit 2. J Biol Chem 263: 16045–16050

    PubMed  CAS  Google Scholar 

  • Pearson L, Garcia J, Wu F, Modesti N, Nelson J, Gaynor R (1990) A transdominant tat mutant that inhibits tat-induced gene expression from the human immunodeficiency virus long terminal repeat Proc Natl Acad Sci USA 87: 5079–5083

    Article  PubMed  CAS  Google Scholar 

  • Post LE, Roizman B (1981) A generalized technique for deletion of specific genes in large genomes: a gene 22 of herpes simplex virus 1 is not essential for growth. Cell 25: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Powell PA, Stark DM, Sanders PR, Beachy RN (1989) Protection against tobacco mosaic virus in transgenic plants that express tobacco mosaic virus antisense RNA. Proc Natl Acad Sci USA 86: 6949–6952

    Article  PubMed  CAS  Google Scholar 

  • Prody GA, Bakos JT, Buzayan JM, Schneider IR, Bruening G (1986) Autolytic processing of dimeric plant virus satellite RNA. Science 231:1577–1580

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M (1988) How eukaryotic transcriptional activators work. Nature 335: 683–689

    Article  PubMed  CAS  Google Scholar 

  • Rhodes A, James W (1990) Inhibition of human immunodeficiency virus replication in cell culture by endogenously synthesized antisense RNA. J Gen Virol 71:1965–1974

    Article  PubMed  CAS  Google Scholar 

  • Rimsky L, Due Dodon M, Dixon EP, Greene WC (1989) Trans-dominant inactivation of HTLV-I and HIV-1 gene expression by mutation of the HTLV-I rex transactivator. Nature 341: 453–456

    Article  PubMed  CAS  Google Scholar 

  • Salter DW, Crittenden LB (1989) Artificial insertion of a dominant gene for resistance to avian leukosis virus into the germ line of the chicken. Theor Appl Genet 77: 457–461

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sarmiento M, Kleinerman ES (1990) Innate resistance to herpes simplex virus infection. Human lymphocyte and monocyte inhibition of viral replication. J Immunol 144(5): 1942–1953

    PubMed  CAS  Google Scholar 

  • Sarver N, Cantin EM, Chang PS, Zaia JA, Ladne PA, Stephens DA, Rossi JJ (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247:1222–1225

    Article  PubMed  CAS  Google Scholar 

  • Sczakiel G, Pawlita M (1991) Inhibition of human immunodeficiency virus type 1 replication in human T cells stably expressing antisense RNA. J Virol 65: 468–472

    PubMed  CAS  Google Scholar 

  • Sears AE, Halliburton IW, Meignier B, Silver S, Roizman B (1985) Herpes simplex virus 1 mutant deleted in the α22 gene: growth and gene expression in permissive and restrictive cells, and establishment of latency in mice. J Virol 55: 338–346

    PubMed  CAS  Google Scholar 

  • Seif I, de Maeyer E, Riviere I, de Maeyer-Guignard J (1991) Stable antiviral expression in BALB/c 3T3 cells carrying a beta interferon sequence behind a major histocompatibility complex promoter fragment. J Virol 65: 664–671

    PubMed  CAS  Google Scholar 

  • Shepard AA, Polentino P, DeLuca NA (1990) Trans-dominant inhibition of herpes simplex virus transcriptional regulatory protein ICP4 by heterodimer formation. J Virol 64: 3916–3926

    PubMed  CAS  Google Scholar 

  • Simons RW, Kleckner N (1988) Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet 22: 567–601

    Article  PubMed  CAS  Google Scholar 

  • Smith CC, Aurelian L, Reddy MP, Miller PS, Ts’o POP (1986) Antiviral effect olan oligo(nucleoside methylphosphonate) complementary to the splice junction of herpes simplex virus type 1 immediate early pre-mRNAs 4 and 5. Proc Natl Acad Sci 83: 2787–2791

    Article  PubMed  CAS  Google Scholar 

  • Staeheli P (1990) Interferon-induced proteins and the antiviral state. Adv Virus Res 38: 147–200

    Article  PubMed  CAS  Google Scholar 

  • Staeheli P, Haller O, Boll W, Lindenmann J, Weissmann C (1986) Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 44: 147–158

    Article  PubMed  CAS  Google Scholar 

  • Sullenger BA, Lee TC, Smith CA, Lingers GE, Gilboa E (1990a) Expression of chimeric tRNA-driven antisense transcripts renders NIH3T3 cells highly resistant to Moloney murine leukemia virus replication. Mol Cell Biol 10: 6512–6523

    PubMed  CAS  Google Scholar 

  • Sullenger BA, Gallardo HF, Lingers GE, Gilboa E (1990b) Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63: 601–608

    Article  PubMed  CAS  Google Scholar 

  • Tratschin JD, West MH, Sandbank T, Carter BJ (1984) A human parvovirus, adeno-associated virus, as a eukaryotic vector: transient expression and encapsidation of the prokaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol 4: 2072–2081

    PubMed  CAS  Google Scholar 

  • Trono D, Feinberg MB, Baltimore D (1989) HIV-1 gag mutants can dominantly interfere with the replication of the wild-type virus. Cell 59:113–120

    Article  PubMed  CAS  Google Scholar 

  • Van der Krol AR, Lenting PE, Veenstra J, Van der Meer IM, Koes RE, Geräts AGM, Mol JNM, Stuitje AR (1988a) An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869

    Article  Google Scholar 

  • Van der Krol AR, Mol JNM, Stuitje AR (1988b) Modulation of eukaryotic gene expression by complementary RNA or DNA sequences. BioTechniques 6: 958–976

    PubMed  Google Scholar 

  • Von RĂĽden T, Gilboa E (1989) Inhibition of human T-cell leukemia virus type 1 replication in primary human T cells that express antisense RNA. J Virol 63: 677–682

    Google Scholar 

  • Walder J (1988) Antisense DNA and RNA: progress and prospects. Genes Dev 2: 502–504

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Izant JG, Harland RM (1985) Anti-sense RNA as a molecular tool for genetic analysis. Trends Genet 2: 22–25

    Article  Google Scholar 

  • Werge TM, Biocca S, Cattaneo A (1990) Intracellular immunization. Cloning and intracellular expression of a monoclonal antibody to the p21ras protein. FEBS Lett 274:193–198

    Article  PubMed  CAS  Google Scholar 

  • Whitley RJ (1990) Herpes simplex viruses. In: Fields BN, Knipe DM et al. Virology, 2nd edn. Raven, New York, pp 1843–1887

    Google Scholar 

  • Wong KK Jr, Rose JA, Chatterjee S (1991) Restriction of HSV-1 production in cell lines transduced with an antisense viral vector targeting the ICP4 gene. In: Vaccine 91. Cold Spring Harbor Laboratory Press, New York, pp 183–189

    Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transfor-mation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75: 280–284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Wong, K.K., Chatterjee, S. (1992). Controlling Herpes Simplex Virus Infections: is Intracellular Immunization the Way of the Future?. In: Rouse, B.T. (eds) Herpes Simplex Virus. Current Topics in Microbiology and Immunology, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77247-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77247-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77249-8

  • Online ISBN: 978-3-642-77247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics