Skip to main content

Shigella Lipopolysaccharide: Structure, Genetics, and Vaccine Development

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 180))

Abstract

Lipopolysaccharide (LPS) is a compound macromolecule anchored in the outer leaflet of the outer membrane of Gram-negative bacteria (Fig. 1) and extending out from the cell into the external medium (for detailed reviews see Jann and Jann 1984; MäKELä and Stocker 1984). It is a major structural component of the cell surface, and it has been calculated that there are about 2.5 × 106 molecules per cell in Salmonella typhimurium, occupying some 45% of the surface of the outer membrane (Inouye 1979). Each LPS molecule is composed of three distinct structural segments, namely the innermost hydrophobic lipid A moiety, which constitutes the main lipid component of the outer leaflet of the asymmetrical outer membrane; the outermost O-specific polysaccharide (also called the O-antigen or somatic antigen), which consists of a short orlong linear polymer of an oligosaccharide repeat unit; and the core oligosaccharide, which links the O-antigen to the lipid A. LPS molecules interact structurally and functionally with a number of other cell surface components, including several outer membrane proteins (LUGTENBREG and van Alphen 1983; Nikaido and Vaara 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attridge SR, Daniels D, Morona JK, Morona R (1990) Surface co-expression of Vibrio cholerae and Salmonella typhi O-antigens on Ty21a clone EX210. Microb Pathoge 8: 177–188

    CAS  Google Scholar 

  2. Austin EA, Graves JF, Hite LA, Parker CT, Schnaitman CA (1990) Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: Insertion mutagenesis of the rfa locus. J Bacteriol 172: 5312–5325

    PubMed  CAS  Google Scholar 

  3. Baron LS, Kopecko DJ, Formal SB, Seid R, Guerry P, Powell C (1987) Introduction of Shigella flexneri 2a Type and group antigen genes into oral typhoid vaccine strain Salmonella typhi Ty21a. Infect Immun 55: 2797–2801

    PubMed  CAS  Google Scholar 

  4. Beutler B, Cerami A (1988) The history, properties, and biological effects of Cachetin. Biochemistry 27: 7575–7582

    PubMed  CAS  Google Scholar 

  5. Binns MM, Vaughan S, Timmis KN (1985) ‘O’-antigens are essential virulence factors of Shigella sonnei and Shigella dysenteriae. Zentralbl Balzteriol Miknrbiol Hyg [B] 181:197–205

    CAS  Google Scholar 

  6. Brahmbhatt HN, Quigley NB, Reeves PR (1986) Cloning part of the region encoding biosynthetic enzymes for surface (O-antigen) of Salmonella typhimurium. Mol Gen Genet 203:172–176

    PubMed  CAS  Google Scholar 

  7. Brahmbhatt HN, Wyk PJ, Quigley NB, Reeves PR (1988) A complete physical map of the rfb locus encoding biosynthetic enzymes for the O-antigen of Salmonella typhimurium LT2. J Bacteriol 170:98–102

    PubMed  CAS  Google Scholar 

  8. Buchanan TM, Pearce WA (1979) Pathogenic aspects of outer membrane components of Gram-negative bacteria. In: Inouye M (ed) Bacterial outer membranes. Wiley, New York, pp 475–514

    Google Scholar 

  9. Charles I, Dougan G (1990) Gene expression and the development of live enteric vaccines. Trends Biochem 8: 117–121

    CAS  Google Scholar 

  10. Devino LV (1959) The specific prophylaxis of dysentery with vaccines from complete antigens. Zh Miobiol Epidemiol Immunobiol 30: 22–31

    Google Scholar 

  11. Dupont HL, Hornick RB, Snyder MJ, Libonati JL, Formal SB, Gangarosa EJ (1972) Immunity in shigellosis. II. Protection induced by oral live vaccine or primary infection. J Infect Dis 125: 12–16

    PubMed  CAS  Google Scholar 

  12. Ewing WH, Lindberg AA (1984) Serology of Shigella. In: Bergan T (ed) Methods in Microbiology, vol 14. Academic, London, pp 113–142

    Google Scholar 

  13. Falkone G, Campa M, Smith H, Scott GM (1984) Bacterial and viral inhibition and modulation of host defences. Academic, London Farrar WE (1985) Antibiotic resistance in developing countries. J Infect Dis 152: 1103–1107

    Google Scholar 

  14. Fontaine A, Arondel J, Sansonetti PJ (1990) Construction and evaluation of live attenuated vaccine strains of Shigella flexneri and Shigella dysenteriae 1. Res Microbiol 141: 907–912

    PubMed  CAS  Google Scholar 

  15. Formal SB, Levine MM (1984) Shigellosis. In: Germanier R (ed) Bacterial vaccines. Academic, New York, pp 167–186

    Google Scholar 

  16. Formal SB, LaBrec EH, Palmer A, Falkow S (1965) Protection of monkeys against experimental shigellosis with attenuated vaccines. J Bacteriol 90: 63–68

    PubMed  CAS  Google Scholar 

  17. Formal SB, Kent TH, Austin S, LaBrec EH (1966a) Fluorescent-antibody and histological study of vaccinated and control monkeys challenged withShigella flexneri. J Bacteriol 91: 2368–2376

    PubMed  CAS  Google Scholar 

  18. Formal SB, Kent TH, May HC, Palmer A, Falkow S, LaBrec EH (1966b) Protection of monkeys against experimental shigellosis with a living attenuated oral polyvalent dysentery vaccine. J Bacteriol 92: 17–22

    PubMed  CAS  Google Scholar 

  19. Formal SB, Maenza RM, Austin S, LaBrec EH (1967) Failure of parenteral vaccines to protect monkeys against experimental shigellosis. Proc Soc Exp Biol Med 25: 347–349

    Google Scholar 

  20. Formal SB, Gemski P, Baron LS, LaBrec EH (1970) Genetic transfer of Shigella flexneri 2a antigens to Escherichia coli K-12. Infect Immun 1: 279–287

    PubMed  CAS  Google Scholar 

  21. Formal SB, Baron LS, Kopecko DJ, Washington O, Powell C, Life CA (1981) Construction of a potential bivalent vaccine strain: introduction of Shigella sonnei form I antigen genes into the galE Salmonella typhi Ty21a typhoid vaccine strain. Infect Immun 34: 746–750

    PubMed  CAS  Google Scholar 

  22. Formal SB, Hale TL, Kapfer C, Cogan JP, Snoy PJ, Chung R, Wingfield ME, Elisberg BL, Baron LS (1984) Oral vaccination of monkeys with an invasive Escherichia coli K-12 hybrid expressing Shigella flexneri 2a somatic antigen. Infect Immun 46: 465–469

    PubMed  CAS  Google Scholar 

  23. Gamian A, Romanowska E (1982) The core structure of Shigella sonnei lipopolysaccharide and the linkage between O-specific polysaccharide and the core region. Eur J Biochem 129: 105–109

    PubMed  CAS  Google Scholar 

  24. Gemski P Jr, Formal SB (1975) Shigellosis: an invasive infection of the gastrointestinal tract. In: Schlessinger D (ed) American Society for Microbiology, Washington, DC, pp 165–169

    Google Scholar 

  25. Gemski P Jr, Stocker BAD (1967) Transduction by bacteriophage P22 in nonsmooth mutants of Salmonella typhimurium. J Bacteriol 93:1588–1597

    PubMed  CAS  Google Scholar 

  26. Gemski P Jr, Sheahan DG, Washington O, Formal SB (1972) Virulence of Shigella flexneri hybrids expressing Escherichia coli somatic antigens. Infect Immun 6:104–111

    PubMed  Google Scholar 

  27. Gemski P Jr, Koeltzow DE, Formal SB (1975) Phage conversion of Shigella flexneri group antigens. Infect Immun 11: 685–691

    PubMed  CAS  Google Scholar 

  28. Godard C, Hannecart-Pokorni E (1977) Étude d’un locus génétique rfa impliqué dans la biosynthése du ‘core’ du lipopolyoside de la paroi Shigella flexneri F6S. Ann Inst Pasteur Microbiol 128A: 19–33

    CAS  Google Scholar 

  29. Goldman RC, Joiner K, Leive L (1984) Serum-resistant mutants of Escherichia coli 0111 contain increased lipopolysaccharide, lack an O-antigen-containing capsule, and cover more of their lipid A core with O antigen. J Bacteriol 159: 877–882

    PubMed  CAS  Google Scholar 

  30. Grossman N, Leive L (1984) Complement activation via the alternative pathway by purified Salmonella lipopolysaccharide is affected by its structure but not its O-antigen length. J Immunol 132: 376–385

    PubMed  CAS  Google Scholar 

  31. Hale TL (1990) Hybrid vaccines using Escherichia coli as an antigen carrier. Res Microbiol 141:913–919

    PubMed  CAS  Google Scholar 

  32. Hale TL, Formal SB (1989) Oral Shigella vaccines. Curr Top Microbiol Immunol 146: 205–211

    PubMed  CAS  Google Scholar 

  33. Hale TL, Formal SB (1990) Live oral vaccines consisting of Escherichia coli orSalmonella typhi expressing Shigella antigens. In: Woodrow GC, Levine MM (eds) New generation vaccines. Marcel Dekker, New York, pp 667–677

    Google Scholar 

  34. Hale TL, Sansoneetti PJ, Schad A, Austin S, Formal SB (1983) Characterization of virulence plasmids and plasmid associated outer membrane proteins inShigella flexneri, Shigella sonnei, and Escherichia coli. Infect Immun 40: 340–350

    PubMed  CAS  Google Scholar 

  35. Hale TL, Guerry P, Seid RC, Kapfer C, Wingfield ME, Reaves CB, Baron LS, Formal SB (1984) Expression of lipopolysaccharide O-antigen inEscherichia coli K-12 hybrids containing plasmid and-chromosomal genes from Shigella dysenteriae 1. Infect Immun 46: 470–475

    PubMed  CAS  Google Scholar 

  36. Hannecart-Pokomi E, Godard C, Beumer J (1976) Chimiotypes de mutants R de Shigella flexneri et récepteurs de phages. 1. Etude chimique des lipopolyosides. Ann Microbiol 127B: 3–14

    Google Scholar 

  37. Herrero M, Lorenzo VD, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172: 6557–6567

    PubMed  CAS  Google Scholar 

  38. Higgins AR, Floyd TM, Kader MA (1955) Studies in shigellosis III. A controlled evaluation of a monovalent Shigella vaccine in a highly endemic environment. Am J Trop Med Hyg 4: 281 -284

    PubMed  CAS  Google Scholar 

  39. Inouya M (1979) What is the outer membrane? In: Inouya M (ed) Bacterial outer membranes. Wiley, New York, pp 1–12

    Google Scholar 

  40. Iseki S, Hamano S (1959) Conversion of type antigen IV in Shigella flexneri by bacteriophage. Proc Jpn Acad 35: 407–412

    Google Scholar 

  41. Izhar M, Nuchamowitz Y, Mirelman D (1982) Adherence of Shigella flexneri to guinea pig intestinal cells is mediated by mucosal adhesin. Infect Immun 35: 1110–1118

    PubMed  CAS  Google Scholar 

  42. Jann K, Jann B (1984) Structure and biosynthesis of O-antigens. In: Rietschel ET (ed) Chemistry of endotoxin, pp 138–186, Handbook of endotoxin, vol. 1. Elsevier, Amsterdam

    Google Scholar 

  43. Jann K, Westphal 0 (1975) Microbial polysaccharides. In: Sela M (ed) The antigens. Academic, New York, 3: 1–125

    Google Scholar 

  44. Jansson PE, Lindberg AA, Lindberg B, Wollin R (1981) Structural studies on the hexose region of the core in lipopolysaccharides from enterobacteriaceae. Eur J Biochem 115: 571–577

    PubMed  CAS  Google Scholar 

  45. Jiang XM, Neal B, Santiago F, Lee SJ, Romana LK, Reeves PR (1991) Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Miocrobiol 5: 695–713

    CAS  Google Scholar 

  46. Joiner KA, Schmetz MA, Goldman RC, Leive L, Frank MM (1984) Mechanism of bacterial resistance to complement-mediated killing: inserted C5b-9 correlates with killing for Escherichia coli 0111B4 varying in O-antigen capsule and O-polysaccharide coverage of lipid A core oligosaccharide. Infect Immun 45: 113–117

    PubMed  CAS  Google Scholar 

  47. Joiner KA, Grossman N, Schmetz M, Leive L (1986) C3 binds preferentially to long-chain lipopolysaccharide during alternative pathway activation by Salmonella montevideo. J Immunol 136: 710–715

    PubMed  CAS  Google Scholar 

  48. Kadis S, Weinbaum G, Ajl SJ (1971) Microbial toxins, vol 5. Academic, New York

    Google Scholar 

  49. Kauffmann F (1961) Die Bakteriologie der Salmonella Species. Munksgaard, Copenhagen

    Google Scholar 

  50. Kauffmann F (1966) The bacteriology of enterobacteriaceae. Munksgaard, Copenhagen, pp 76–80

    Google Scholar 

  51. Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol. 2. Academic, New York, pp 287–363 (Molecular biology series)

    Google Scholar 

  52. Ketyl I, Rauss K, Vertenyl A (1974) Oral immunization against dysentery. Acta Microbiol Acad Sei Hung 21:81–85

    Google Scholar 

  53. Keusch GT, Bennish ML (1988) Shigellosis. In: Evans AS, Brachman P (eds) Bacterial diseases of humans. Plenum, New York

    Google Scholar 

  54. Kiener PA, Marek F, Rodgers G, Lin PF, Warr G, Desiderio J (1988) Induction of tumor necrosis factor, IFN-gamma, and acute lethality in mice by toxic and non-toxic forms of lipid A.J. Immunol 141: 870–874

    PubMed  CAS  Google Scholar 

  55. Kopecko DJ, Washington O, Formal SB (1980) Genetic and physical evidence för plasmid control of Shigella sonnei form I cell surface antigen. Infect Immun 29: 207–214

    PubMed  CAS  Google Scholar 

  56. Levine MM (1982) Bacillary dysentery. Mechanisms and treatment. Med Clin North Am 66: 623

    PubMed  CAS  Google Scholar 

  57. Liang-Takasaki CJ, Mäkelä PH, Leive L (1982) Phagocytosis of bacteria by macrophages: changing the carbohydrate of lipopolysaccharide alters interaction with complement and macrophages. J Immunol 128: 1229–1235

    PubMed  CAS  Google Scholar 

  58. Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27: 205–237

    PubMed  CAS  Google Scholar 

  59. Lindberg AA, Karnell A, Stocker BAD, Katakura S, Sweiha H, Reinholt FP (1988) Development of an auxotrophic oral live Shigella flexneri vaccine. Vaccine 6:147–150

    Google Scholar 

  60. Lindberg B, Lonngren J, Romanowska E, Rüden U (1972) Location of O-acetyl groups in Shigella flexneri types 3c and 4b lipopolysaccharides. Acta Chem Scand 26: 3808–3810

    PubMed  CAS  Google Scholar 

  61. Linde K, Dentchev V, Bondarenko V (1990) Live Shigella flexneri 2a and Shigella sonnei I vaccine candidate strains with two attenuating markers. I. Construction of vaccine candidate strains with retained invasiveness but reduced intracellular multiplication. Vaccine 8: 25–29

    PubMed  CAS  Google Scholar 

  62. Loppnow H, Brade H, Dürrbaum I, Dinarello CA, Kusumoto S (1989) IL-1 induction-capacity of defined lipopolysaccharide partial structures. J Immunol 142: 3229–3238

    PubMed  CAS  Google Scholar 

  63. Lüderitz O, Westphal O, Staub AM, Nikaido H (1971) Isolation and chemical and immunological characterization of bacterial lipopolysaccharides. In: Weinbaum G, Kadis S, Ajl SJ (eds) Microbial toxins, vol 4. Academic, New York, pp 145–233

    Google Scholar 

  64. Lugtenberg B, van Alphen L (1983) Molecular architecture and functioning of the outer membrane of Escherichia coli and other Gram-negative bacteria. Biochem Biophys Acta 737: 51–115

    PubMed  CAS  Google Scholar 

  65. Maagd RAD, Lugtenberg BJJ (1987) Outer membranes of Gram-negative bacteria. Biochem Soc Trans 15 [Suppl] 54–62

    Google Scholar 

  66. Mäkelä P, Stocker BAD (1984) Genetics of lipopolysaccharide. In: Rietschel ET (ed) Chemistry of endotoxin. Elsevier, Amsterdam, pp 59–136 (Handbook of endotoxin, vol 1)

    Google Scholar 

  67. Mäkelä P, Bradley DJ, Brandis H, Frank MM, Hahn H, Henkel W, Jann K, Morse SA, Robbins RB, Rosenstreich DL, Smith H, Timmis K, Tomasz A, Turner MJ, Wiley DS (1980) Evasion of host defences. In: Smith H, Skehel JJ, Turner MJ (eds) The molecular basis of microbial pathogenicity. Verlag Chemie, Weinheim, pp 175–198

    Google Scholar 

  68. Matsui S (1958) Antigenic changes in the Shigella flexneri group by bacteriophage. Jpn J Microbiol 2: 153–158

    PubMed  CAS  Google Scholar 

  69. McGrath BC, Osborn MJ (1991) Localization of the terminal steps of O-antigen synthesis in Salmonella typhimurium. J Bacteriol 173: 649–654

    PubMed  CAS  Google Scholar 

  70. Mel DM, Terzin AL, Vuksic L (1965a) Studies on vaccination against bacillary dysentery. I. Immunization of mice against experimentalShigella infection. Bull WHO 32: 633–636

    PubMed  CAS  Google Scholar 

  71. Mel DM, Terzin AL, Vuksic L (1965b) Studies on vaccination against bacillary dysentery. Ill, Effective oral immunization againstShigella flexneri 2a in a field trial. Bull WHO 32: 647–655

    PubMed  CAS  Google Scholar 

  72. Mel DM, Gangarosa EJ, Radovanovic ML, Arsic BL, Litoinjenko S (1971) Studies on bacillary dysentery. Bull WHO 45: 457–464

    PubMed  CAS  Google Scholar 

  73. Mills SD, Timmis KN (1988) Genetics of O-antigen polysaccharide biosynthesis in Shigella and vaccine development. In: Cabello FC, Pruzzo C (eds) Bacteria, complement and the phagocytic cell. Springer, Berlin Heidelberg New York, pp 21–39

    Google Scholar 

  74. Mills SD, Sekizaki T, Gonazalez-Carrero MI, Timmis KN (1988) Analysis and genetic manipulation of Shigella virulence determinants for vaccine development. Vaccine 6:116–122

    PubMed  CAS  Google Scholar 

  75. Mims CA (1982) The pathogenesis of infectious disease, 2nd edn. Academic, London

    Google Scholar 

  76. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49: 1–32

    PubMed  CAS  Google Scholar 

  77. Nurminen M, Wahlström E, Kleemola M, Leinonen M, Saikku P, Mäkela, H (1984) Immunologically related ketodeoxyoctonate-containing structures in Chlamydia trachomatis, Re mutants of Salmonella species, and Acinetobacter calcoaceticus var. anitratus. Infect Immun 44: 609- 613

    PubMed  CAS  Google Scholar 

  78. Okada N, Sasakawa C, Tobe T, Yamada M, Nagai S, Talukder KA, Komatsu K, Kanegasaki S, Yoshikawa M (1991) Virulence-associated chromosomal loci of Shigella flexneri identified by random Tn5 insertion mutagenesis. Mol Microbiol 5:187–195

    PubMed  CAS  Google Scholar 

  79. Okamura N, Nakaya R (1977) Rough mutants of Shigella flexneri 2a that penetrate tissue culture cells but does not evoke keratoconjunctivitis in guinea pigs. Infect Immun 17: 4–8

    PubMed  CAS  Google Scholar 

  80. Okamura N, Nagei T, Nakaya R, Kondo S, Murakami M, Hisatsune K (1983) HeLa cell invasiveness and O antigen of Shigella flexneri as separate and prerequisite attributes of virulence to evoke keratoconjunctivitis in guinea pigs. Infect Immun 39: 505–513

    PubMed  CAS  Google Scholar 

  81. Pegues JC, Chen L, Gordon AW, Ding GL, Coleman WG Jr (1990) Cloning, expression, and characterization of theEscherichia coli K-12rfaü gene. J Bacteriol 172: 4652–4660

    PubMed  CAS  Google Scholar 

  82. Penn CW (1983) Bacterial envelope and humoral defences. In: Easmon CSF, Jeljaszewicz J, Brown MRW, Lambert PA (eds) Role of the envelope in the survival of bacteria in infection. Academic, London, pp 109–135 (Medical microbiology, vol 3)

    Google Scholar 

  83. Pluschke G, Mayden J, Achtman M, Levine RP (1983) Role of the capsule and the O antigen in resistance of 018: K1 Escherichia coli to complement-mediated killing. Infect Immun 42:907- 913

    PubMed  CAS  Google Scholar 

  84. Popoff. MY, Le Minor L (1985) Expression of antigenic factor 054 is associated with the presence of a plasmid inSalmonella. Ann Inst Pasteur Microbiol [B] 136:169–179

    Google Scholar 

  85. Raetz CRH (1990) Biochemistry of endotoxins. Annu Rev Biochem 59:129–170

    PubMed  CAS  Google Scholar 

  86. Reske K, Jann K (1972) The 08 antigen of Escherichia coli. Structure of the polysaccharide chain. Eur J Biochem 67: 320–328

    Google Scholar 

  87. Riley LW, Junio LN, Libaek LB, Schoolnik GK (1987) Plasmid-encoded expression of lipopolysaccharide O-antigenic polysaccharide in enteropathogenicEscherichia coli. Infect Immun 55: 2052–2056

    PubMed  CAS  Google Scholar 

  88. Riley LW, Junio LN, Schoolnik GK (1990) HeLa cell invasion by a strain of enteropathogenic Escherichia coli that lacks the O-antigenic polysaccharide. Mol Microbiol 4: 1661–1666

    PubMed  CAS  Google Scholar 

  89. Robbins PW, Wright A (1971) Biosynthesis of O-antigens. In: Weinbaum G, Kadis, S, Ajl SJ (eds) Microbial toxins vol 4. Academic, New York, pp 351–368

    Google Scholar 

  90. Robbins PW, Wright A, Dankert M (1966) Polysaccharide biosynthesis. J Gen Physiol 49: 331–346

    PubMed  CAS  Google Scholar 

  91. Romanowska E, Reinhold V (1973) 2-Amino-2-deoxyhexuronic acid: a constituent of Shigella sonnei phase I lipopolysaccharide. Eur J Biochem 36: 160–166

    PubMed  CAS  Google Scholar 

  92. Sansonetti PJ, Arondel J (1989) Construction and evaluation of a double mutant of Shigella flexneri as a candidate for oral vaccination against shigellosis. Vaccine 7: 443–450

    PubMed  CAS  Google Scholar 

  93. Sansonetti P, David M, Toucas M (1980) Correlation entre la perte d’ADN plasmidique et le passage de la phase I virulente ä la phase II avirulente chez Shigella sonnei. C R Acad Sci 290: 879–882

    CAS  Google Scholar 

  94. Sansonetti P, Formal SB, Hale TL, Kopecko DJ (1981a) Bases genetique de la penetration de Shigella flexneri dans les cellules epitheliales. Ann Immunol 132:183–189

    Google Scholar 

  95. Sansonetti P, Kopecko DJ, Formal SB (1981b) Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence. Infect Immun 34: 75–83

    PubMed  CAS  Google Scholar 

  96. Sansonetti PJ, Hale TL, Dammin GJ, Kapfer C, Collins HH Jr, Formal SB (1983) Alterations in the pathogenesis of Escherichia coli K-12 after transfer of plasmid and chromosomal genes from Shigella flexneri. Infect Immun 34:1392–1402

    Google Scholar 

  97. Scid RC, Kopecko DJ, Sadoff JC, Schneider H, Baron LS, Formal SB (1984) Unusual lipopolysaccharide antigens of Salmonella typhi and vaccine strain expressing the Shigella sonnei form I antigen. J Biol Chem 259: 9028–9034

    Google Scholar 

  98. Simmons DAR (1971) Immunochemistry of Shigella flexneri O-antigens: a study of structural and genetic aspects of the biosynthesis of cell-surface antigens. Bacteriol Rev 35:117–148

    PubMed  CAS  Google Scholar 

  99. Sturm S, Timmis KN (1986) Cloning of the rfb gene region of Shigella dysenteriae 1 and construction of an rfb-rfp gene cassette for the development of lipopolysaccharide-based live anti-dysentery vaccines. Microb Pathog 1: 289–297

    PubMed  CAS  Google Scholar 

  100. Sturm S, Fortnagel P, Timmis KN (1984) Immunoblotting procedure for the analysis of electrophoretically fractionated bacterial lipopolysaccharides. Arch Microbiol 140:198–201

    PubMed  CAS  Google Scholar 

  101. Sturm S, Jann B, Jann K, Fortnagel P, Timmis KN (1986a) Genetic and biochemical analysis of Shigella dysenteriae 1 O antigen polysaccharide biosynthesis inEscherichia coli K-12: 9 kb plasmid of S. dysenteriae 1 determines addition of a galactose residue to the lipopolysaccharide core. Microb Pathog 1: 299–306

    PubMed  CAS  Google Scholar 

  102. Timakov VD, Petrovskava VG, Bondarenko VM (1970) Studies of the genetic control of Shigella subgroup B type specific antigens. Ann Inst Pasteur 118: 3–9

    CAS  Google Scholar 

  103. Timmis KN, Boulonois GJ, Bitter-Suermann D, Cabello FC (1985) Surface components of Escherichia coli that mediate resistance to bactericidal activities of serum and phagocytosis. Curr Top Microbiol Immunol 118: 197–218

    PubMed  CAS  Google Scholar 

  104. Timmis KN, Gonzalez-Carrero MI, Sekizaki T, Rojo F (1986a) Biological activities specified by antibiotic resistance plasmids. J Antimicrob Chemother 18 (Suppl. C): 1–12

    PubMed  Google Scholar 

  105. Timmis KN, Sturm S, Watanabe H (1986b) Genetic dissection of pathogenesis determinants of Shigella and enteroinvasiveEscherichia coli. In: Holmgren J, Lindberg AA, Möllby R (eds) Development of vaccines and drugs against diarrhoea. Student Literatur, Lund, pp 107- 126

    Google Scholar 

  106. Verma NK, Reeves PR (1989) Identification and sequence of rfbS and rfbE, which determine antigenic specificity of group A and group D salmonellae. J Bacteriol 171: 5694–5701

    PubMed  CAS  Google Scholar 

  107. Verma NK, Quigley NB, Reeves PR (1988) O-antigen variation inSalmonella spp.: rfb gene clusters of three strains. J Bacteriol 170:103–107

    PubMed  CAS  Google Scholar 

  108. Watanabe H, Timmis KN (1984) A small plasmid in Shigella dysenteriae 1 specifies one or more functions essential for O antigen production and bacterial virulence. Infect Immun 43: 391–396

    PubMed  CAS  Google Scholar 

  109. Watanabe H-, Nakamura A, Timmis KN (1984) Small virulence plasmid ofShigella dysenteriae 1 strain W30864 encodes a 41,000-dalton protein involved in formation of specific lipopolysaccharide side chains of serotype 1 isolates. Infect Immun 46: 55–63

    PubMed  CAS  Google Scholar 

  110. Westphal O, Jann K, Himmelspach K (1983) Chemistry and immunochemistry of bacterial lipopolysaccharides as cell wall antigens and endotoxins. Prog Allergy 33: 9–39

    PubMed  CAS  Google Scholar 

  111. H. N. Brahmbhatt et al.: Shigella Lipopolysaccharide

    Google Scholar 

  112. Wollenweber H-W, Rietschel ET (1990) Analysis of lipopolysaccharide (lipid A) fatty acids. J Microbiol Methods 11:195–211

    CAS  Google Scholar 

  113. Wölpe SD, Davatelis G, Sherry B, Beutler B, Hesse DG (1988) Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med 167: 570–581

    PubMed  Google Scholar 

  114. Wyk P, Reeves PR (1989) Identification and sequence of the gene for abequose synthetase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. J Bacterid 171: 5687–5693

    CAS  Google Scholar 

  115. Yoshida Y, Okamura N, Kato J, Watanabe H (1991) Molecular cloning and characterization of form I antigen genes of Shigella sonnei. J Gen Microbiol 137: 867–874

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brahmbhatt, H.N., Lindberg, A.A., Timmis, K.N. (1992). Shigella Lipopolysaccharide: Structure, Genetics, and Vaccine Development. In: Sansonetti, P.J. (eds) Pathogenesis of Shigellosis. Current Topics in Microbiology and Immunology, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77238-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77238-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77240-5

  • Online ISBN: 978-3-642-77238-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics