Skip to main content

Direct Manipulation of Physical Concepts in a Computerized Exploratory Laboratory

  • Conference paper
Computer-Based Learning Environments and Problem Solving

Part of the book series: NATO ASI Series ((NATO ASI F,volume 84))

Abstract

Computer microworlds are becoming more and more powerful for learning and teaching science. However, even a powerful computer microworld is not enough, by itself, to enable students to explore and learn about a formal domain. It is argued that it should be integrated with other media, especially books. In a computer microworld, direct manipulation techniques allow the implementation of direct manipulation of physical concepts, as it is shown with an example from physics — NEWTON, a computerized exploratory laboratory. In this computerized exploratory laboratory — a conceptual laboratory — the user can explore and experiment with concrete-abstract objects, confront multiple representations and pose and devise strategies to learn about the most fundamental phenomenon of Nature: motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bliss, J., & Ogborn, J. (1989). Tools for exploratory learning. Journal of Computer Assisted Learning, 5, 37–50, 1989.

    Google Scholar 

  2. Cabrol, D. (1990). Le rôle de l’intelligence artificielle dans l’enseignement: l’Example de la Chimie. Proceedings of “Encontro Computadores no Ensino da Física e da Química” (pp. 59–60 ). Coimbra, Portugal.

    Google Scholar 

  3. Cuban, L. (1989). Neoprogressive visions and organizational realities, Harvard Educational Review, 59 (2), 217–222.

    Google Scholar 

  4. DiSessa, A. (1987). Artificial worlds and real experience. In R. W. Lawler & M. Yazdani (Eds.), Artificial Intelligence and Education, Vol. 1 (pp. 55–77 ). Norwood, NJ: Ablex.

    Google Scholar 

  5. DiSessa, A. (1982). Unlearning Aristotelian Physics: A study of knowledge-based learning. Cognitive Science, 6, 37–75.

    Article  Google Scholar 

  6. Driver, R. (1983). The pupil as scientist. Milton Keynes: Open University Press.

    Google Scholar 

  7. Educational Technology Center (1988). Making sense of the future. Harvard: Harvard Graduate School of Education.

    Google Scholar 

  8. Fischbein, E. (1990). Introduction. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education (pp. 1–13 ) Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  9. Forman, G., & Pufall, P. B. (1988). Constructivism in the computer age: A reconstructive epilogue. In G. Forman & P. B. Pufall (Eds.), Constructivism in the Computer Age (pp. 235–250 ). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  10. Hebenstreit, J. (1987). Simulation et pédagogie, une rencontre du troisième type. École Supérieure d’Electricité, Gif-Sur-Yvette.

    Google Scholar 

  11. Levin, J. A. & Waugh, M. (1988). Educational simulations, tools, games, and microworlds: Computer-based environments for learning. In M. Rabinowitz (Ed.), Computer simulations as research tools, International Journal of Educational Research, 12, 71–79.

    Google Scholar 

  12. McDermott, L. C. (1984). Critical review of research in the domain of mechanics. Research on Physics Education: proceeding of the first international workshop (pp. 137–182 ). Paris: CNRS.

    Google Scholar 

  13. O’Shea, T. (1990). Informal communication at the NATO Advanced Research Workshop Advanced Technologies in the Teaching of Mathematics and Science, Milton Keynes.

    Google Scholar 

  14. Papert, S. (1980) Mindstorms, children, computers and powerful ideas. NY: Basic Books.

    Google Scholar 

  15. Plomp, T., Pelgrum, W. J. & Sterrneman, A. H. M. (1990). Influence of computer use on schools curriculum: limited integration. Computer Education, 14 (2), 159–171.

    Article  Google Scholar 

  16. Schanck, R. C. (1986). Explanation patterns. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  17. Schecker, H. (1990). The didactic potential of model-building systems for Physics education. Paper presented at the NATO Advanced Research Workshop Advanced Technologies in the Teaching of Mathematics and Science, Milton Keynes.

    Google Scholar 

  18. Schwartz, J. L. (1989). Intellectual mirrors: a step in the direction of making schools knowledge-making places. Harvard Educational Review, 59 (1), 51–61.

    Google Scholar 

  19. Schwartz, J. L. (1990). Software to think with. Proceedings of “Encontro Computadores no Ensino da Fisica e da Qutmica” (p. 51 ). Coimbra: Portugal.

    Google Scholar 

  20. Schwartz, J. L. (1990). Informal communication at the NATO Advanced Research Workshop Advanced Technologies in the Teaching of Mathematics and Science, Milton Keynes.

    Google Scholar 

  21. Shneiderman, B. (1983). Direct manipulation: A step beyhond programming languages. IEEE Computer, 16, 57–69.

    Article  Google Scholar 

  22. Striley, J. (1988). Physics for the rest of us. Educational Researcher, August-September, 7 - 10.

    Google Scholar 

  23. Teodoro, V. D. (1990). The computer as a conceptual lab: Learning dynamics with an exploratory environment. Paper presented at the NATO Advanced Research Workshop Advanced Technologies in the Teaching of Mathematics and Science, Milton Keynes.

    Google Scholar 

  24. Thigs, G. (1988). How forceful is intuition? Students’ difficulties in mechanics in relation to common sense. In Thijs, G. D., Boer, H. H., Mcfarlane, I. G. & Stoll, C. J. (Eds.), Learning difficulties and teaching strategies in secondary school science and mathematics, Proceedings of a Regional Conference, Botswana. Amsterdam: Free University Press.

    Google Scholar 

  25. Viennot, L. (1979). Raisonnement spontané en dynamique élémentaire. Paris: Hermann.

    Google Scholar 

  26. Wong, D. (1987). Teaching A level physics through microcomputer dynamic modelling: II. Evaluation of teaching. Journal of Computer Assisted Learning, 3, 164–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teodoro, V.D. (1992). Direct Manipulation of Physical Concepts in a Computerized Exploratory Laboratory. In: De Corte, E., Linn, M.C., Mandl, H., Verschaffel, L. (eds) Computer-Based Learning Environments and Problem Solving. NATO ASI Series, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77228-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77228-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77230-6

  • Online ISBN: 978-3-642-77228-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics