Skip to main content

Investigation into Building an Invariant Surface Model from Sparse Data

  • Conference paper
Book cover Active Perception and Robot Vision

Part of the book series: NATO ASI Series ((NATO ASI F,volume 83))

  • 143 Accesses

Abstract

This paper addresses the problem of forming surface depth estimates from sparse information, which are invariant to three-dimensional rotations and translations of the surface in the chosen coordinate system. We begin this investigation by examining a simplified version of this problem, that of forming invariant curve estimates from sparse data, to help gain insight into the more complex problem in higher dimensions. Two new algorithms are proposed and studied in detail, and several examples are presented to demonstrate their effectiveness. The extension of these algorithms to surfaces in threedimensional space is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poggio, T., T. V. Torre, and C. Koch: Computational vision and regularization theory. Nature 317, 314–319 (1985)

    Article  Google Scholar 

  2. Tikhonov, A. N. and V. Y. Arsenin: Solutions of Ill-Posed Problems. Washington, D. C.:V. H. Winston & Sons 1977

    MATH  Google Scholar 

  3. Guggenheimer, H. W.: Differential Geometry. New York: Dover Publications, Inc. 1977

    MATH  Google Scholar 

  4. Besl, P. J. and R. C. Jain: Invariant surface characteristics for 3D object recognition in range data. Computer Vision, Graphics and Image Processing 33, 33–80 (1886).

    Article  Google Scholar 

  5. Bernoulli, D.: The 26th letter to Euler. In: Correspondence Mathematique et Physique (P. H. Fuss, ed.). St. Petersburg: Academia imperiale des sciences 1843

    Google Scholar 

  6. Malcolm, M. A.: On the computation of nonlinear spline functions. SIAM Journal of Numerical Analysis 14, 254–282 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blake, A. and A. Zisserman: Visual reconstruction. Cambridge, Massachusetts: MIT Press 1987

    Google Scholar 

  8. Grimson, W. E. L.: From images to surfaces: a computational study of the human early visual system. Cambridge, Massachusetts: MIT Press 1981

    Google Scholar 

  9. Terzopoulos, D.: Multilevel reconstruction of visual surfaces: variational principles and finite-element representations. In: Multiresolution Image Processing and Analysis (A. Rosenfeld, ed.). New York, NY: Springer-Verlag 1984

    Google Scholar 

  10. Terzopoulos, D.: Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattem Analysis and Machine Intelligence PAMI-8, 413–424 (1986)

    Article  Google Scholar 

  11. Terzopoulos, D.: The computation of visible-surface representations. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-10, 417–438 (1988)

    Article  Google Scholar 

  12. Boult, T. E. and J. R. Kender: Visual surface reconstruction using sparse depth data. Proceedings of the Computer Vision and Pattern Recognition Conference 1986, Miami, FL, pp. 68–76.

    Google Scholar 

  13. Lancaster, P. and K. Salkauskas: Curve and Surface Fitting. London: Academic Press 1986

    MATH  Google Scholar 

  14. Reinsch, C. H.: Smoothing by Spline Functions. Numerische Mathematik 10, 177–183 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. Salkauskas, K.: C1 splines for interpolation of rapidly varying data. Rocky Mountain Journal of Mathematics 14, 239–250 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Blake, A. and A. Zisserman: Invariant surface reconstruction using weak continuity constraints. Proceedings of the Computer Vision and Pattern Recognition Conference 1986, Miami, FL, pp. 62–67.

    Google Scholar 

  17. Terzopoulos, D.: Multilevel computational processes for visual surface reconstruction. Computer Vision, Graphics, and Image Processing 24, 52–96 (1983)

    Article  Google Scholar 

  18. Lipschutz, M. M.: Differential Geometry. New York, NY: McGraw-Hill 1969

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stevenson, R.L., Delp, E.J. (1992). Investigation into Building an Invariant Surface Model from Sparse Data. In: Sood, A.K., Wechsler, H. (eds) Active Perception and Robot Vision. NATO ASI Series, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77225-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77225-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77227-6

  • Online ISBN: 978-3-642-77225-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics