Electron Spin Resonance Spectra of Irradiated Textiles: Applications to the Dosimetry of Ionising Radiations

  • J. Barthe
  • V. Kamenopoulou
  • B. Catoire
  • F. Bermann
  • G. Portal


In order to be able to evaluate the dose received by a person accidentally exposed to gamma radiation, a method based on observing changes induced in the intensity of the electon spin resonance (ESR) spectrum of irradiated fabrics has been developed. About ten different fabrics were studied: the fibers of three of these fabrics exhibited useful dosimetric properties (cotton, polypropylene, quartz based fibers). In order to minimize the effects of fiber anisotropy on the ESR spectra, a system was devised to rotate samples in the measurement cavity during the time in which the spectrum is recorded. The relation between the intensity of the ESR signal and the ionizing radiation dose is linear over a large dose range (up to a few kilograys). However, the existence of an intrinsic signal from the non irradiated fabric makes it difficult to determine low doses. The minimum dose threshold was raised by employing a special sample preparation technique. The effects of temperature on the ESR signal (thermal fading) from irradiated fabrics was also studied. These results should be considered in the general context of the dosimetry of ionizing radiations through the effects of such irradiations on organic materials. The main results obtained in this field and their usefulness are discussed.


Electron Spin Resonance Electron Spin Resonance Spectrum Cotton Fiber Linear Energy Transfer Irradiate Fabric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Descours S., Assayrenc J., Bermann F., Couderc B., De Choudens H., Delard R., Rassat A., Servoz-Gavin P. Etude par RPE des radicaux libres créés sous irradiation dans certaines substances organiques. Rapport CEA R-3913-1970.Google Scholar
  2. [2]
    Bermann F., De Choudens H., Descours S. Application à la dosimétrie de la mesure par RPE des radicaux libres créés dans les acides aminés. Advances in Physical and Biological Radiation. Detectors AIEA 311-325-1971.Google Scholar
  3. [3]
    Kaatz R., Bermann F. Un dosimètre à large gamme, peu sensible à la qualité du rayonnement: l’alanine. VIIIème Congrès Internat. de la S.F.R.P.-Saclay 1976, 419–434.Google Scholar
  4. [4]
    Regulla D., Deffner U. Dosimetry by ESR spectroscopy of alanine, Int. J. Appl. Radiat. Isot. 33, 1101–1114, 1982.CrossRefGoogle Scholar
  5. [5]
    Sollier T., Mosse D., Chartier M., Joli J. The LMRI ESR/alanine dosimetry system: description and performance. 2nd Int. Sympos. on ESR Dosimetry-Munich 10–13 Oct 1988.Google Scholar
  6. [6]
    Nam J.W. Bulletin de l’AIEA 4 41-43 1988.Google Scholar
  7. [7]
    Kojima T., Tanaka R., Morita Y., Seguchi T., Alanine dosemeters using polymers as binders Appl. Radiat. Isot. 37 517-520 1986.Google Scholar
  8. [8]
    Regulla D. Assessment of a fatal dose at an industrial Irradiator event. Second International Symposium on ESR dosimetry and applications. München October 10–13 1988.Google Scholar
  9. [9]
    Kamanopoulou B., Barthe J., Hickman C., Portal G. Accidental gamma irradiation dosimetry using clothing. Radiat Prot. Dosim. 17 185–188 (1986).Google Scholar
  10. [10]
    Barthe J., Kamanopoulou V., Catoire B. and Portal G. Dose evaluation from textiles fibers. A post determination of initial ESR signal. 1st Int. Conf. on ESR dosimetry, Munich 6–10 October 1988. A paraître dans Applied Radiation and isotopes.Google Scholar
  11. [11]
    Kamenopoulou V. Propriétés dosimétriques des fibres textiles: application à la dosimétrie par résonance paramagnétique électronique d’un accident d’irradiation γ. Thèse d’Université no 174, Toulouse (Septembre) 1987, Rapport CEA-R-5425 FRANCE (1988).Google Scholar
  12. [12]
    Oberlin M. Recherches sur la structure et l’organisation cristalline de la cellulose. Thèse d’état, Paris (1959).Google Scholar
  13. [13]
    Arthur J.C., Blouin F.L.A. Radiation induced graft polymers of cellulose. In: Proceedings of the International Symposium on Radiation Induced Polymerization and Copolymerization, Colombus, Nov. 29–30, TID-7643, pp. 319-334 (1962).Google Scholar
  14. [14]
    Dalton F.L., Houlton M.R., Sykes J.A. Gas yields from electron irradiated cotton cellulose. Nature, 200, pp. 862–864 (1963).CrossRefGoogle Scholar
  15. [15]
    Pshezhetskii S.V. EPR of free radicals in radiation chemistry. New York: J. Wiley (1974).Google Scholar
  16. [16]
    Sotton M., Arniaud A.M., Rabourdin C. Etude, par diffractométrie des RX, des paramètres de cristallinité et de désordre dans les fibres textiles. Bull. Scient ITF, 7(27) pp. 265–303 (1978).Google Scholar
  17. [17]
    Dilli S., Ernst I.T., Garnett J.L. Radiation induced reactions with cellulose. Austr. J. Chem., 20, pp. 911–927 (1967).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. Barthe
    • 1
  • V. Kamenopoulou
    • 2
  • B. Catoire
    • 3
  • F. Bermann
    • 1
  • G. Portal
    • 1
  1. 1.Commissariat à l’Energie Atomique, IPSN/DPT/SIDRFontenay Aux Roses CedexFrance
  2. 2.Commission à l’Energie Atomique, GrecqueAghia Paraskevi, AttikisGrece
  3. 3.Institut Textile de FranceEcully CedexFrance

Personalised recommendations