Skip to main content

Coherent Raman Scattering in High-Pressure/High Temperature Fluids: An Overview

  • Conference paper
Coherent Raman Spectroscopy

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 63))

Abstract

The present understanding of high-pressure/high-temperature dense-fluid behavior is derived almost exclusively from hydrodynamic and thermodynamic measurements. Such results average over the microscopic aspects of the materials and are, therefore, insufficient for a complete understanding of fluid behavior. At present, dense-fluid models can be verified only to the extent that they agree with the macroscopic measurements. Recently, using stimulated Raman scattering, Raman induced Kerr effect scattering, and coherent anti-Stokes Raman scattering, we have been able to probe some of the microscopic phenomenology of these dense fluids. In this paper, we discuss primarily the use of CARS in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N2, O2, CO, their mixtures, CH3NO2, and N2O. These experimental spectra are compared to synthetic spectra calculated using a semiclassical model for CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. For O2, the possibility of resonance enhancement from collision-induced absorption is addressed. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. The derived parameters suggest thermal equilibrium of the vibrational levels is established less than a few nanoseconds after shock passage. Vibrational temperatures are obtained that agree with those derived from equation-of-state calculations. Measured linewidths suggest that vibrational dephasing times have decreased to subpicosecond values at the highest shock pressures.

This work was supported by the US Department of Energy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. A. Forest, “Burning and Detonation,” LA-7245 iLos Alamos National Laboratory Report, Los Alamos, New Mexico 1978).

    Google Scholar 

  2. C. L. Mader, Numerical Modeling of Detonation (University of California Press, Berkeley, California 1979).

    Google Scholar 

  3. E. L. Lee and C. M. Tarver, Phys. Fluids 23, 2362 (1980).

    Article  ADS  Google Scholar 

  4. J. Wackerle, R. L. Rabie, M. J. Ginsberg and A. B. Anderson in Proceedings of the Symposium on High Dynamic Pressures (Commissariat à l’Energie Atomique, Paris, France 1978) p. 127.

    Google Scholar 

  5. M. Cowperthwaite in Proceedings of the Symposium on High Dynamic Pressures (Commissariat à l’Energie Atomique, Paris, France 1978), p. 201.

    Google Scholar 

  6. J. W. Nunizato in Shock Waves in Condensed Matter-1983, J. R. Asay, R. A. Graham, and G. K. Straub, eds. (Elsevier Science Publishers, Amsterdam, 1984) p. 293.

    Google Scholar 

  7. J. W. Nunizato and E. K. Walsh, Arch. Rational Mech. Anal. 73, 285 (1980).

    Google Scholar 

  8. J. N. Johnson, P. K. Tang and C. A. Forest, J. Appl. Phys. 57, 4323 (1985).

    Article  ADS  Google Scholar 

  9. P. K. Tang, J. N. Johnson, and C. A. Forest in Proc. 8th Symp. Detonation (Albuquerque, New Mexico 1985), p. 375.

    Google Scholar 

  10. C. Mader and J. Kerschner in Proc. 8th Symp. Detonation (Albuquerque, New Mexico, 1985) p. 366.

    Google Scholar 

  11. S. C. Schmidt, D. S. Moore, D. Schiferl, and J. W. Shaner, Phys. Rev. Lett. 50, 661 (1983).

    Article  ADS  Google Scholar 

  12. M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. 177, 580 (1969).

    Article  ADS  Google Scholar 

  13. D.V.J. Linde, M. Maier, and W. Kaiser, Phys. Rev. 178, 178 (1969).

    Google Scholar 

  14. M. H. Rice, R. G. McQueen, and J. M. Walsh, Solid State Physics 6 (Academic Press, New York 1958) p. 1.

    Google Scholar 

  15. R. D. Dick, J. Chem. Phys. 57, 6021 (1970).

    Article  ADS  Google Scholar 

  16. W. D. Ellenson and M. Nicol, J. Chem. Phys. 61,1380 (1974), this mode is called v 2 in G. Herzberg, Infrared and Raman Spectra (Van Nostrand Reinhold, New York 1968).

    Article  ADS  Google Scholar 

  17. R. N. Keeler, G. H. Bloom and A. C. Mitchell, Phys. Rev. Lett. 17, 852 (1966).

    Article  ADS  Google Scholar 

  18. A. N. Dremin and V. Yu. Klimenko, “On the Role of the Shock Wave Front in Organic Substances Decomposition,” Gas Dynamics of Explosions and Reactive Systems, Minsk, USSR, 1981.

    Google Scholar 

  19. A. N. Dremin and L. V. Barbare in Shock Waves in Condensed Matter— 1981, Am. Inst. Phys. Proc. 78, W. S. Nellis, L. Seaman, and R. A. Graham eds. (New York, 1983), p. 270.

    Google Scholar 

  20. L. V. Barbare, A. N. Dremin, S. V. Pershin, and V. V. Yakovlev, Fiz. Gor. i Var 5, No. 4, 528 (1969).

    Google Scholar 

  21. D. Heiman, R. W. Hellworth, M. D. Levenson, and G. Martin, Phys. Rev. Lett. 36, 189 (1976).

    Article  ADS  Google Scholar 

  22. S. C. Schmidt, D. S. Moore, and J. W. Shaner in Shock Waves in Condensed Matter—1988, J. R. Asay, R. A. Graham, and G. K. Straub, eds. (Elsevier Science Publishers, Amsterdam, 1984) p. 293.

    Google Scholar 

  23. D. S. Moore, S. C. Schmidt, D. Schiferl, and J. W. Shaner in High Pressure in Science and Technology, Part II, C. Homan, R. K. MacCrone and E. Whalley, eds. (North-Holland Publishing, New York, 1984) p. 87.

    Google Scholar 

  24. W. G. VonHolle and R. A. McWilliams in Laser Probes for Combustion Chemistry (American Chemical Society Symposium Series 184), D. R. Crosley, ed. (American Chemical Society, Washington, DC 1983), p. 319.

    Google Scholar 

  25. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon Press, Oxford 1981).

    Google Scholar 

  26. M. D. Levenson in: Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, ed. (Academic Press, New York 1981) pp. 214–222.

    Google Scholar 

  27. P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).

    Article  ADS  Google Scholar 

  28. W. M. Tolles, J. W. Nibler, J. R. McDonald, and A. B. Harvey, Appl. Spectrosc. 31, 253 (1977).

    Article  ADS  Google Scholar 

  29. N. Bloembergen, Nonlinear Optics (Benjamin, Reading, MA, 1965).

    Google Scholar 

  30. S.A.J. Druet and J.-P.E. Taran, Prog. Quantum Electron 7, 1 (1981).

    Article  ADS  Google Scholar 

  31. W. B. Roh, P. W. Schreiber, and J.-P.E. Taran, Appl. Phys. Lett. 29, 174 (1976).

    Article  ADS  Google Scholar 

  32. D. S. Moore, S. C. Schmidt, and J. W. Shaner, Phys. Rev. Lett. 50, 1819 (1983).

    Article  ADS  Google Scholar 

  33. S. C. Schmidt, D. S. Moore, and M. S. Shaw, Phys. Rev. B35,493 (1987).

    ADS  Google Scholar 

  34. D. S. Moore, S. C. Schmidt, M. S. Shaw, and J. D. Johnson, J. Chem. Phys. 90, 1368 (1989).

    Article  ADS  Google Scholar 

  35. S. C. Schmidt, D. S. Moore, M. S. Shaw, and J. D. Johnson, J. Chem. Phys. 91, 6765 (1989).

    Article  ADS  Google Scholar 

  36. W. J. Nellis and A. C. Mitchell, J. Chem. Phys. 73, 6137 (1980).

    Article  ADS  Google Scholar 

  37. S. A. Akhmanov, F. N. Gadjiev, N. I. Koroteev, R. Yu. Orlov, and I. L. Shumay, Appl. Opt. 19, 859 (1980).

    Article  ADS  Google Scholar 

  38. S. C. Schmidt, D. Schiferl, A. S. Zinn, D. D. Ragan, and D. S. Moore, High Pressure Science and Technology 4, 577 (1990).

    Article  Google Scholar 

  39. S. C. Schmidt, D. Schiferl, A. S. Zinn, D. D. Ragan, and D. S. Moore, submitted to J. Appl. Phys.

    Google Scholar 

  40. A. S. Zinn, D. Schiferl, and M. F. Nicol, J. Chem. Phys. 87, 1267 (1986).

    Article  ADS  Google Scholar 

  41. J. Belak, R. D. Etters, and R. LeSar, J. Chem. Phys. 89, 1625 (1988).

    Article  ADS  Google Scholar 

  42. D. W. Chandler and G. E. Ewing, J. Chem. Phys. 73, 4904 (1980).

    Article  ADS  Google Scholar 

  43. M. S. Shaw, J. D. Johnson, and B. L. Holian, Phys. Rev. Lett. 50, 1141 (1983)

    Article  ADS  Google Scholar 

  44. J. D. Johnson, M. S. Shaw, and B. L. Holian, J. Chem. Phys. 80, 1279 (1984)

    Article  ADS  Google Scholar 

  45. M. S. Shaw, J. D. Johnson and J. D. Ramshaw, J. Chem. Phys. 84, 3479 (1986).

    Article  ADS  Google Scholar 

  46. S. A. Akhmanov, F. N. Gadzhiev, N. I. Koroteev, R. Yu. Orlov, and I. L. Shumai, JETP Lett. 27, 243 (1978).

    ADS  Google Scholar 

  47. J. Chesnoy, Chem. Phys. Lett. 125, 267 (1986).

    Article  ADS  Google Scholar 

  48. J. Chesnoy and J.-J. Weis, J. Chem. Phys. 84, 5378 (1986).

    Article  ADS  Google Scholar 

  49. S. I. Temkin and A. I. Burstein, JETP Lett. 24, 86 (1976).

    ADS  Google Scholar 

  50. S.R.J. Brueck, Chem. Phys. Lett. 50, 516 (1977).

    Article  ADS  Google Scholar 

  51. D. W. Oxtoby, Annu. Rev. Phys. Chem. 32, 77 (1981).

    Article  ADS  Google Scholar 

  52. J. W. Ellis and H. O. Kneser, Z. Phys. 86, 583 (1933).

    Article  ADS  Google Scholar 

  53. R. P. Blickensderfer and G. E. Ewing, J. Chem. Phys. 51, 5284 (1969).

    Article  ADS  Google Scholar 

  54. P. H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972).

    Article  Google Scholar 

  55. V. I. Dianov-Klokov, Opt. Spectrosc. 6, 290 (1959).

    ADS  Google Scholar 

  56. V. I. Dianov-Klokov, Opt. Spectrosc. 13, 109 (1962).

    ADS  Google Scholar 

  57. V. I. Dianov-Klokov, Opt. Spectrosc. 21, 233 (1966).

    ADS  Google Scholar 

  58. C. W. Cho, E. J. Allin, and H. L. Welsh, Can. J. Phys. 41, 1991 (1963).

    Google Scholar 

  59. K. Syassen and M. Nicol, in Physics of Solids Under High Pressure, edited by J. S. Schilling and R. N. Shelton (North-Holland, Amsterdam, 1981), p. 33.

    Google Scholar 

  60. M. Nicol and K. Syassen, Phys. Rev. B 28, 1201 (1983).

    Article  ADS  Google Scholar 

  61. S.A.J. Druet, B. Attal, T. K. Gustafson, and J.-P.E. Taran, Phys. Rev. A 18, 1529 (1978).

    Article  ADS  Google Scholar 

  62. N. Bloembergen, H. Lotem, and R. T. Lynch, Jr., Indian J. Pure and Appl. Phys. 16, 151 (1978).

    Google Scholar 

  63. B. Attal-Tretout, P. Berlemont, and J.-P.E. Taran, Indian J. Pure Appl. Phys. 26, 159 (1988).

    Google Scholar 

  64. H. Kiefte, M. J. Clouter, N. H. Rich, and S. F. Ahmad, Chem. Phys. Lett. 70, 425 (1980).

    Article  ADS  Google Scholar 

  65. M. J. Clouter and H. Kiefte, J. Chem. Phys. 66, 1736 (1977).

    Article  ADS  Google Scholar 

  66. S.R.J. Brueck, Chem. Phys. Lett. 53, 273 (1978).

    Article  ADS  Google Scholar 

  67. D. C. McKean and R. A. Watt, J. Mol. Spectrosc., Vol. 61, 184 (1976).

    Article  ADS  Google Scholar 

  68. G. Malewski, M. Pfeiffer, and P. Reich, J. Mol. Structure, 3, 419 (1969).

    Article  ADS  Google Scholar 

  69. D. S. Moore and S. C. Schmidt, in Proc. 9th Sym. Detonation, preprint (Portland, Oregon, 1989), p. 80.

    Google Scholar 

  70. J. R. Hill, D. S. Moore, S. C. Schmidt, and C. B. Storm, “Infrared, Raman, and Coherent Anti-Stokes Raman Spectroscopy of the Hydrogen Deuterium Isotopomers of Nitromethane,” submitted to J. Phys. Chem.

    Google Scholar 

  71. S. C. Schmidt, D. S. Moore, J. W. Shaner, D. L. Shampine, and W. T. Holt, Physica 139 & 140B, 587 (1986).

    Google Scholar 

  72. D. S. Moore, S. C. Schmidt, J. W. Shaner, D. L. Shampine, and W. T. Holt, in Shock Waves in Condensed Matter—1985, Y. M. Gupta, Ed. (Plenum Publishing, NY, 1986) p. 207.

    Google Scholar 

  73. S. C. Schmidt, D. S. Moore, D. Schiferl, M. Chätelet, T. P. Turner, J. W. Shaner, D. L. Shampine, and W. T. Holt, in Advances in Chemical Reaction Dynamics, R. M. Rentzepis and C. Capellos, Eds. (D. Reidel Publishing, NY, 1986) p. 425.

    Google Scholar 

  74. G. Herzberg, Infrared and Raman Spectra (Van Nostrand Reinhold, NY, 1945)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, S.C., Moore, D.S. (1992). Coherent Raman Scattering in High-Pressure/High Temperature Fluids: An Overview. In: Marowsky, G., Smirnov, V.V. (eds) Coherent Raman Spectroscopy. Springer Proceedings in Physics, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77194-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77194-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77196-5

  • Online ISBN: 978-3-642-77194-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics