CARS in Aerospace Research

  • B. Attal-Trétout
  • P. Bouchary
  • N. Herlin
  • M. Lefebvre
  • P. Magre
  • M. Péalat
  • J. P. Taran
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 63)


Coherent anti-Stokes Raman scattering (CARS) has become one of the indispensable tools of aerospace research. Both in low density gaseous reactive flows and in high pressure combustion, it can return high quality non-intrusive measurements of species densities and temperatures. Certainly, the most common application of CARS in analytical chemistry has been combustion diagnostics. Flames and combustors of all kinds have been investigated. The work was started on small-scale devices [1–3], but soon large scale industrial furnaces [4], piston engines [5, 6], jet engine combustors [7–9] and supersonic combustors [10] were studied. Variants of the technique, like simultaneous multiple species detection, have been proposed and tested [11–13]. At the same time, attention was drawn to several weaknesses of CARS, like saturation [14–17] and lack of spatial resolution [18], which may cause substantial errors and are frequently not given enough attention. Roughly speaking, however, application to combustion has matured, and a substantial fraction of the technical research on CARS now centers on refining lineshape reduction at high pressures [19–23] and on the application of resonance-enhanced CARS to detection of radicals at high pressures [24].


Equivalence Ratio Probe Volume Rotational Temperature Aerospace Research Rotational Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Régnier and J.P. Taran, Appl. Phys. Lett. 23, 240 (1973).ADSCrossRefGoogle Scholar
  2. [2]
    F. Moya, S.A.J. Druet, and J.P. Taran, Opt. Commun. 13, 169 (1975).ADSCrossRefGoogle Scholar
  3. [3]
    K. Muller-Dethlefs, M. Péalat, and J.P. Taran, Ber. Bunsenges. Phys. Chem. 85, 803 (1981).Google Scholar
  4. [4]
    M. Aldén, Sov. J. Quantum Electron. 18, 746 (1988).CrossRefGoogle Scholar
  5. [5]
    D.A. Greenhalgh, D.R. Williams and C.A. Baker,“CARS Thermometry in a Firing Production Petrol Engine”, Proc. Autotech. Conference, I. Mech E (1985).Google Scholar
  6. [6]
    M.J. Cottereau, F. Grich, and J.J. Marie, Appl. Phys. B 51, 63 (1990).ADSCrossRefGoogle Scholar
  7. [7]
    G.L. Switzer, W.M. Roquemore, R.B. Bradley, P.W. Schreiber, and W.B. Roh, Appl. Optics 18, 2343 (1979).ADSCrossRefGoogle Scholar
  8. [8]
    A.C. Eckbreth, G.M. Dobbs, J.H. Stufflebeam, and P.A. Tellex, Appl. Opt. 23, 1328 (1984).ADSCrossRefGoogle Scholar
  9. [9]
    R. Bédué, P. Gastebois, R. Bailly, M. Péalat, and J.P. Taran, Comb. Flame, 57, 141 (1984).CrossRefGoogle Scholar
  10. [10]
    T.J. Anderson, G.M. Dobbs, and A.C. Eckbreth, Appl. Opt. 25, 4076 (1986)ADSCrossRefGoogle Scholar
  11. [11]
    L.P. Goss, and G. Switzer, “Laser Optics/Combustion Diagnostics”, Final Report AFWAL-TR-86–2023 (1986).Google Scholar
  12. [12]
    A.C. Eckbreth, T.J. Anderson, and G.M. Dobbs, Appl. Phys. B 45, 215 (1988).ADSCrossRefGoogle Scholar
  13. [13]
    R.R. Antcliff, and O. Jarrett, Jr., Rev. Sci. Instrum. 58, 2075 (1987)ADSCrossRefGoogle Scholar
  14. [14]
    A. Gierulski, M. Noda, T. Yamamoto, G. Marowsky, and A. Slenczka, Opt. Lett. 12, 608 (1987).ADSCrossRefGoogle Scholar
  15. [15]
    M. Péal, M. Lefebvre, J.P. Taran, and P.L. Kelley, Phys. Rev. A 38, 1948 (1988).ADSCrossRefGoogle Scholar
  16. [16]
    V.N. Zadkov and N.I. Koroteev, Chem. Phys. Letters 105, 108 (1984).ADSCrossRefGoogle Scholar
  17. [17]
    R.P. Lucht and R.L. Farrow, J. Opt. Soc. Am. B 6, 2313 (1989).ADSCrossRefGoogle Scholar
  18. [18]
    J.P. BoquilIon, M. Pealat, P. Bouchardy, G. Collin, P. Magre, and J.P. Taran, Opt. Lett. 13, 722 (1988).ADSCrossRefGoogle Scholar
  19. [19]
    R.J. Hall, J.F. Verdieck, and A.C. Eckbreth, Opt. Commun. 35, 69 (1980).ADSCrossRefGoogle Scholar
  20. [20]
    M.L. Koszykowski, R.L. Farrow, and R.E. Palmer, Opt. Lett. 10, 478 (1985).ADSCrossRefGoogle Scholar
  21. [21]
    L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, J. Chem. Phys. 89, 5568 (1988).ADSCrossRefGoogle Scholar
  22. [22]
    F.M. Porter, D.A. Greenhalgh, P.J. Stopford, D.R. Williams, and C.A. Baker, Appl. Phys. B 51, 31 (1990).ADSCrossRefGoogle Scholar
  23. [23]
    See also papers by Millot et al. and Temkin et al. in this volume.Google Scholar
  24. [24]
    B. Attal-Trétout, S.C. Schmidt, E. Crété, P. Dumas, and J.P. Taran, J. Quant. Spectr. Radiat. Transfer 43, 351 (1990).ADSCrossRefGoogle Scholar
  25. [25]
    B. Massabieaux, G. Gousset, M. Lefebvre, and M. Péalat, J. Physique 48, 1939 (1987).CrossRefGoogle Scholar
  26. [26]
    See also papers by Devyatov et al. and Kruglik et al. in this volume.Google Scholar
  27. [27]
    R. Lückerath, P. Balk, M. Fischer, D. Grundmann, A. Hertling, and W. Richter, Chemtronics 2, 199 (1987).Google Scholar
  28. [28]
    See paper by Smirnov, Volkov, Yazan and Marowsky in this volume.Google Scholar
  29. N. Herlin, M. Péalat, M. Lefebvre, P. Alnot and J. Perrin, “Rotational energy transfer on a hot surface in a low pressure flow studied by CARS”, to be published.Google Scholar
  30. [30]
    See papers by Barth and Huisken and by Ilyukhin et al. in this volume.Google Scholar
  31. [31]
    M. Péalat, P. Bouchardy, M. Lefebvre, and J.P. Taran, Appl. Opt. 24, 1012 (1985).ADSCrossRefGoogle Scholar
  32. N. Herlin, M. Péalat, M. Lefebvre, and M. Parlier, J. Physique, Colloque C5, 50 (1989), C5 - 843.Google Scholar
  33. [33]
    D.A. King, CRC Reviews in Solid St. and Material Sc. 7, 167 (1979).ADSCrossRefGoogle Scholar
  34. [34]
    D.A. King and M.G. Wells, Proc. Roy. Soc. London, A 339 245 (1974).ADSCrossRefGoogle Scholar
  35. M. Péalat and M. Lefebvre “Temperature measurement by single-shot dual-line CARS in low-pressure flows”, to be published.Google Scholar
  36. M. Péalat, P. Magre, P. Bouchardy, and G. Collin “Simultaneous temperature and sensitive two-species concentration measurements by single-shot CARS”, Appl. Opt., to be published.Google Scholar
  37. [37]
    J.P. Taran, and S.A.J. Druet, Prog. Quantum Electron. 7, 1 (1981).ADSCrossRefGoogle Scholar
  38. [38]
    B. Attal-Trétout, P. Berlemontand, and J.P. Taran, Molec. Phys. 70, 1 (1990).ADSCrossRefGoogle Scholar
  39. [39]
    K. Kohse-Hòinghaus, U. Meier, and B. Attal-Trétout, Appl. Opt. 29, 1560 (1990).ADSCrossRefGoogle Scholar
  40. [40]
    C.D. Carter, J.T. Salmon, G.B. King, and N.M. Laurendeau, Appl. Opt. 26, 4551 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • B. Attal-Trétout
    • 1
  • P. Bouchary
    • 1
  • N. Herlin
    • 1
  • M. Lefebvre
    • 1
  • P. Magre
    • 1
  • M. Péalat
    • 1
  • J. P. Taran
    • 1
  1. 1.Office National d’Etudes et de Recherches AérospatialesChâtillon CedexFrance

Personalised recommendations