Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abel FL: Maximal negative dP/dt as an indicator of end of systole. Am. J. Physiol. 240: H676–679, 1981PubMedGoogle Scholar
  2. Alella A, Williams FL, Bolene-Williams C, Katz LN: Interrelation between cardiac oxygen consumption and coronary blood flow. Am. J. Physiol. 183: 570–582, 1955PubMedGoogle Scholar
  3. Ashton JH, Cassidy SS: Reflex depression of cardiovascular function during lung inflation. J. Appl. Physiol. 58: 137–145, 1985PubMedGoogle Scholar
  4. Assanelli D, Lew WYW, Shabetai R, LeWinter MM: Influence of the pericardium on right and left ventricular filling in the dog. J. Appl. Physiol. 63: 1025–1032, 1987PubMedGoogle Scholar
  5. Berglund E, Borst HG, Duff F, Schreiner GL: Effect of heart rate on cardiac work, myocardial oxygen consumption and coronary blood flow in the dog. Acta physiol. scand. 42: 185–198, 1958PubMedCrossRefGoogle Scholar
  6. Beydon L, Chasse M, Harf A, Lemaire F: Inspiratory work of breathing during spontaneous ventilation using demand valves and continuous flow systems. Am. Rev. Resp. Dis. 138: 300–304, 1988PubMedGoogle Scholar
  7. Bos GC van den, Drake AJ, Noble MIM: The effect of carbon dioxid upon myocardial contractile performance, blood flow, and oxygen consumption. J. Physiol. 287: 149–161, 1979PubMedGoogle Scholar
  8. Braunwald E, Sarnoff SJ, Case RB, Stainsby WN, Welch GH: Hemodynamic determinants of coronary flow: effect of changes in aortic pressure and cardiac output on the relationship between myocardial oxygen consumption and coronary flow. Am. J. Physiol. 192: 157–163, 1958PubMedGoogle Scholar
  9. Brecher GA, Mixter G: Effect of respiratory movements on superior cava flow under normal and abnormal conditions. Am. J. Physiol. 172: 457–461, 1953PubMedGoogle Scholar
  10. Brecher GA, Hubay CA: Pulmonary blood flow and venous return during spontaneous respiration. Circ. Res. 3: 210–214, 1955PubMedGoogle Scholar
  11. Brecher GA: Venous return. Grune & Stratton, New York, 1956Google Scholar
  12. Brinker JA, Weiss JL, Lappe DL, Rabson JL, Summer WR, Permutt S, Weisfeldt ML: Leftward septal displacement during right ventricular loading in man. Circulation 61: 626–633, 1980PubMedGoogle Scholar
  13. Bromberger-Barnea B: Mechanical effects of inspiration on heart functions: a review. Fed. Proc. 40: 2172–2177, 1981PubMedGoogle Scholar
  14. Brower R, Wise RA, Hassapoyannes C, Bromberger-Bamea B, Permutt S: Effect of lung inflation on lung blood volume and pulmonary venous flow. J. Appl. Physiol. 58: 954–963, 1985PubMedCrossRefGoogle Scholar
  15. Buda AJ, Pinsky MR, Ingels NB, Daughters GT, Stinson EB, Alderman EL: Effects of intrathoracic pressure on left ventricular performance. New Engl. J. Med. 301: 453–459, 1979PubMedCrossRefGoogle Scholar
  16. Cassidy SS, Wead WB, Seibert GB, Ramanathan M: Changes in left ventricular geometry during spontaneous breathing. J. Appl. Physiol. 63: 803–811, 1987PubMedGoogle Scholar
  17. Coumand A, Motley HL, Werko L, Richards DW: Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am. J. Physiol. 152: 162–174, 1948Google Scholar
  18. Craven KD, Wood LDH: Extrapericardial and esophageal pressures with positive end-expiratory pressure in dogs. J. Appl. Physiol. 51: 798–805, 1981PubMedGoogle Scholar
  19. Dong E, Reitz BA: Effect of timing of vagal stimulation on heart rate in the dog. Circ. Res. 27: 635–646, 1970PubMedGoogle Scholar
  20. Fitzgerald RS, Robotham JL, An and A: Baroreceptor output during normal and obstructed breathing and Mueller maneuvers. Am. J. Physiol. 240: H721–729, 1981PubMedGoogle Scholar
  21. Freedman S, Tattersfield AE, Pride NB: Changes in lung mechanics during asthma induced by exercise. J. Appl. Physiol. 38: 974–982, 1975PubMedGoogle Scholar
  22. Gilbert JC, Glantz SA: Determinants of left ventricular filling and of the diastolic pressure volume relation. Circ. Res. 827–852, 1989Google Scholar
  23. Gobel FL, Nordstrom LA, Nelson RR, Jorgensen CR, Wang Y: The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 57: 549–556, 1978PubMedGoogle Scholar
  24. Goldblatt A, Harrison, Glick G, Braunwald E: Studies on cardiac dimensions in intact, unanesthetized man. II. Effects of respiration. Circ. Res. 13: 448–467, 1963PubMedGoogle Scholar
  25. Goodale WT, Lubin M, Eckenhoff JE, Hafkenschiel H, Banfield WG: Coronary sinus catheterization for studying coronary blood flow and myocardial metabolism. Am. J. Physiol. 152: 340–355, 1948PubMedGoogle Scholar
  26. Guntheroth WG, Morgan BC, Mullins GL: Effect of respiration on venous return and stroke volume in cardiac tamponade. Circ. Res. 20: 381–390, 1967PubMedGoogle Scholar
  27. Guz A, Innes JA, Murphy K: Respiratory modulation of left ventricular stroke volume in man measured using pulsed doppler ultrasound. J. Physiol. 393: 499–512, 1987PubMedGoogle Scholar
  28. Hausknecht MJ, Brin KP, Weisfeldt ML, Permutt S, Yin FCP: Effects of left ventricular loading by negative intrathoracic pressure in dogs. Circ. Res. 62: 620–631, 1988PubMedGoogle Scholar
  29. Heusch G, Deussen A, Thämer V: Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenosis: feed-back aggravation of myocardial ischemia. J. Autonom. Nerv. Syst. 13: 311–326, 1985CrossRefGoogle Scholar
  30. Hill-Smith I, Purves RD: Synaptic delay in the heart: A ionophoretic study. J. Physiol. 279: 31–54, 1978PubMedGoogle Scholar
  31. Hurewitz AN, Sidhu U, Bergowsky EH, Chanana AD: How alterations in pleural pressure influence esophageal pressure. J. Appl. Physiol. 56: 1162–1169, 1984PubMedGoogle Scholar
  32. Janicki JS, Weber KT: The pericardium and ventricular interaction, distensibility, and function. Am. J. Physiol. 238: H494–503, 1980PubMedGoogle Scholar
  33. Jenne JW, Shaughnessy TK, Druz WS, Manfredi CJ, Vestal RE: In vivo functional antagonism between isoproterenol and bronchoconstrictants in the dog. J. Appl. Physiol. 63: 812–819, 1987PubMedGoogle Scholar
  34. Jünemann M, Smiseth OA, Refsum H, Sievers R, Lipton MJ, Carlsson E, Tyberg JV: Quantification of effect of pericardium on LV diastolic PV relation in dogs. Am. J. Physiol. 252: H963–968, 1987PubMedGoogle Scholar
  35. Kahles H, Dreyling M, Kaposciok J, Riegger AJG, Schanzenbächer P, Kromer EP, Maisch B, Kochsiek K: Validierung indirekter myokardialer Sauerstoffverbrauchsparameter bei Patienten mit normaler und pathologisch veränderter Ventrikelfunktion. Z. Kardiol. 78: 285–293, 1989PubMedGoogle Scholar
  36. Karam M, Wise RA, Natarajan TK, Permutt S, Wagner HN: Mechanism of decreased left ventricular stroke volume during inspiration in man. Circulation 69: 866–873, 1984PubMedCrossRefGoogle Scholar
  37. Kirchheim H: Systemic arterial baroreceptor reflexes. Physiol. Rev. 56: 100–176, 1974Google Scholar
  38. Kosche F, Raff WK, Lochner W: Coronardurchblutung bei Erhöhung des arteriellen Kohlensäuredrucks. Pflügers Arch. 328: 170–175, 1971PubMedCrossRefGoogle Scholar
  39. Kussmaul A: Ueber schwielige Mediastino-Pericarditis und den paradoxen Puls. Berliner Klin. Wschr. 10: 433–435, 1873Google Scholar
  40. Laniado S, Yellin EL, Miller H, Frater RWM: Temporal relation of the first heart sound to closure of the mitral valve. Circulation 47: 1006–1014, 1973PubMedGoogle Scholar
  41. Laniado S, Yellin EL, Kotler M, Levy L, Stadler J, Terdiman R: A study of the dynamic relations between the mitral valve echogram and phasic mitral flow. Circulation 51: 104–113, 1975PubMedGoogle Scholar
  42. Latham RD, Sipkema P, Westerhof N, Rubal BJ: Aortic input impedance during Mueller maneuver: an evaluation of “effective length”. J. Appl. Physiol. 65: 1604–1610, 1988PubMedGoogle Scholar
  43. Laurent D, Bolene-Williams C, Williams FL, Katz LN: Effects of heart rate on coronary flow and cardiac oxygen consumption. Am. J. Physiol. 185: 355–364, 1956PubMedGoogle Scholar
  44. Levy MN, Martin PJ, Iano T, Zieske H: Effects of single vagal stimuli on heart rate and atrioventricular conduction. Am. J. Physiol. 218: 1256–1262, 1970PubMedGoogle Scholar
  45. Little WC, Badke FR, O’Rourke RA: Effect of right ventricular pressure on the end-diastolic left ventricular pressure-volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ. Res. 54: 719–730, 1984PubMedGoogle Scholar
  46. Lloyd TC: Respiratory system compliance as seen from the cardiac fossa. J. Appl. Physiol. 53: 57–62, 1982 aGoogle Scholar
  47. Lloyd TC: Mechanical cardiopulmonary interdependence. J. Appl. Physiol. 52: 333–339, 1982 bPubMedGoogle Scholar
  48. Lloyd TC, Cooper JA: Effect of diaphragm contraction on canine heart and pericardium. J. Appl. Physiol. 54: 1261–1268, 1983 aPubMedCrossRefGoogle Scholar
  49. Lloyd TC: Effect of inspiration on inferior vena caval blood flow in dogs. J. Appl. Physiol. 55: 1701–1708, 1983 bPubMedGoogle Scholar
  50. Malliani A, Peterson DF, Bishop VS, Brown AM: Spinal sympathetic cardiocardiac reflexes. Circ. Res. 30: 158–166, 1972PubMedGoogle Scholar
  51. Marini JJ, Rodriguez RM, Lamb V: The inspiratory workload of patient-initiated mechanical ventilation. Am. Rev. Resp. Dis. 134: 902–909, 1986PubMedGoogle Scholar
  52. Maruyama Y, Ashikawa K, Isoyama S, Kanatsuka H, Ino-Oka E, Takishima T: Mechanical interactions between four heart chambers with and without the pericardium in canine hearts. Circ. Res. 50: 86–100, 1982PubMedGoogle Scholar
  53. Midei MG, Maughan WL, Oikawa RY, Kass DA, Sagawa K: Extracardiac pressure changes do not alter contractile function of the left ventricle. Ann. Biomed. Eng. 15: 347–359, 1987PubMedCrossRefGoogle Scholar
  54. Milic-Emili J, Mead J, Turner JM, Glauser EM: Improved technique for estimating pleural pressure from esophageal pressure. J. Appl. Physiol. 19: 207–211, 1964PubMedGoogle Scholar
  55. Milnor WR: Arterial impedance as ventricular afterload. Circ. Res. 36: 565–570, 1975PubMedGoogle Scholar
  56. Misbach GA, Glantz SA: Changes in the diastolic pressure diameter relation alter ventricular function curves. Am. J. Physiol. 237: H 644–648, 1979Google Scholar
  57. Moreno AH, Burchell AR, van der Woude R, Burke JH: Respiratory regulation of splanchnic and systemic venous return. Am. J. Physiol. 213: 455–465, 1967PubMedGoogle Scholar
  58. Morgan BC, Guntheroth WG, Dillard DH: Relationship of pericardial to pleural pressure during quiet respiration and cardiac tamponade. Circ. Res. 16: 493–498, 1965PubMedGoogle Scholar
  59. Morgan BC, Dillard DH, Guntheroth WG: Effect of cardiac and respiratory cycle on pulmonary vein flow, pressure, and diameter. J. Appl. Physiol. 21: 1276–1280, 1966PubMedGoogle Scholar
  60. Morkin E, Collins JA, Goldman HS, Fishman AP: Pattern of blood flow in the pulmonary veins of the dog. J. Appl. Physiol. 20: 118–1128, 1965Google Scholar
  61. Olson CO, Tyson GS, Maier GW, Spratt JA, Davis JD, Rankin JS: Dynamic ventricular interaction in the conscious dog. Circ. Res. 52: 85–104, 1983Google Scholar
  62. Pagani M, Baig H, Sherman A, Manders WT, Quinn P, Patrick T, Franklin D, Vatner SF: Measurement of multiple simultaneous small dimensions and study of arterial pressure-dimension relations in conscious animals. Am. J. Physiol. 235: H 610–617, 1978Google Scholar
  63. Parsons GB, Green JF: Mechanisms of pulsus paradoxus in upper airway obstruction. J. Appl. Physiol. 45: 598–603, 1978PubMedGoogle Scholar
  64. Permutt S, Wise RA, Sylvester JT: Interaction between the circulatory and ventilatory pumps. In: Roussos C, Macklem PT: The Thorax., New York, Marcel Dekker, 1985, 701–735Google Scholar
  65. Peters J, Robotham JL: Hemodynamic effects of increased intrathoracic pressure. In: Cardiopulmonary interactions in acute respiratory failure. Hrsg.: Vincent JL, Suter PM, Update in Intensive Care and Emergency Medicine, Band 2, Springer, New York, 1987, S. 120–135Google Scholar
  66. Peters J, Kindred MK, Robotham JL: Transient analysis of cardiopulmonary interactions. II. Systolic events. J. Appl. Physiol. 64: 1518–1526, 1988 aPubMedGoogle Scholar
  67. Peters J, Kindred MK, Robotham JL: Transient analysis of cardiopulmonary interactions: I. Diastolic Events. J. Appl. Physiol. 64: 1506–1517, 1988 bPubMedGoogle Scholar
  68. Peters J: Respiration within the cardiac cycle. In: Update in Intensive Care and Emergency Medicine, Band 5, Hrsg.: Vincent JL, Springer, New York, S. 202–218, 1988 cGoogle Scholar
  69. Peters J, Fräser C, Stuart S, Baumgartner W, Robotham JL: Negative intrathoracic pressure decreases independently both left ventricular inflow and outflow. Am. J. Physiol. 257: H120–131, 1989PubMedGoogle Scholar
  70. Pinsky M: Determinants of pulmonary arterial flow variation during respiration. J. Appl. Physiol. 56: 1237–1245, 1984PubMedCrossRefGoogle Scholar
  71. Rayford CR, Khouri EM, Lewis FB, Gregg DE: Evaluation of use of left coronary artery inflow and O2 content of coronary sinus blood as a measure of left ventricular metabolism. J. Appl. Physiol. 14: 817–822, 1959PubMedGoogle Scholar
  72. Räsänen J, Väisänen IT, Heikkila J, Nikki P: Acute myocardial infarction complicated by respiratory failure. The effects of mechanical ventilation. Chest 85: 21–28, 1984PubMedCrossRefGoogle Scholar
  73. Rebuck AS, Pengelly LD: Development of pulsus paradoxus in the presence of airways obstruction. New Engl. J. Med. 288: 66–69, 1973PubMedCrossRefGoogle Scholar
  74. Refsum H, Jiinemann M, Lipton MJ, Skioldebrand C, Carlsson E, Tyberg JV: Ventricular diastolic pressure-volume relations and the pericardium. Circulation 64: 997–1004, 1981PubMedCrossRefGoogle Scholar
  75. Robotham JL, Rabson J, Permutt S, Bromberger-Barnea B: Left ventricular hemodynamics during respiration. J. Appl. Physiol. 47: 1295–1303, 1979PubMedGoogle Scholar
  76. Robotham JL, Stuart RS, Borkon AM, Doherty K, Baumgartner W: Effects of changes in left ventricular loading and pleural pressure on mitral flow. J. Appl. Physiol. 65: 1662–1675, 1988PubMedGoogle Scholar
  77. Rooke T, Sparks HV: Arterial CO2, myocardial O2 consumption, and coronary blood flow in the dog. Circ. Res. 47: 217–225, 1980PubMedGoogle Scholar
  78. Rooke GA, Feigl EO: Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ. Res. 50: 273–286, 1982PubMedGoogle Scholar
  79. Rowell LB, Sheriff DD: Are muscle chemoreflexes functionally important ? NIPS 3: 250–245, 1988Google Scholar
  80. Ruskin J, Bache RJ, Rembert JC, Greenfield JC: Pressure-flow studies in man: Effect of respiration on left ventricular stroke volume. Circulation 48: 79–85, 1973PubMedGoogle Scholar
  81. Santamore WP, Heckman L, Bove AA: Right and left ventricular pressure-volume response to respiratory maneuvers. J. Appl. Physiol. 57: 1520–1527, 1984PubMedGoogle Scholar
  82. Sasayama S, Franklin D, Ross J, Kemper WS, McKnown D: Dynamic changes in left ventricular wall thickness and their use in analysing cardiac function in the conscious dog. Am. J. Cardiol. 38: 870–879, 1976PubMedCrossRefGoogle Scholar
  83. Scharf SM, Brown R, Warner KG, Khuri S: Intrathoracic pressures and left ventricular configuration with respiratory maneuvers. J. Appl. Physiol. 66: 481–491, 1989PubMedGoogle Scholar
  84. Schrijen F, Ehrlich W, Permutt S: Cardiovascular changes in conscious dogs during spontaneous deep breaths. Pfliigers Arch. 355: 205–215, 1975CrossRefGoogle Scholar
  85. Shabetai R, Fowler NO, Hurlburt O: Hemodynamic studies of dogs under pentobarbital and morphine chloralose anesthesia. J. Surg. Res. 5: 263–267, 1963CrossRefGoogle Scholar
  86. Shabetai R, Fowler NO, Fenton JC, Masangkay M: Pulsus paradoxus. J. Clin. Invest. 44: 1882–1898, 1965PubMedCrossRefGoogle Scholar
  87. Shabetai R: Pericardial and cardiac pressure. Circulation 77: 1–5, 1988PubMedCrossRefGoogle Scholar
  88. Shim C, Williams MH: Pulsus paradoxus in asthma. The Lancet: 530–531, 1978Google Scholar
  89. Shirato K, Shabetai R, Bhargava V, Franklin D, Ross J: Alteration of the left ventricular diastolic pressure-segment length relation produced by the pericardium. Circulation 57: 1191–1197, 1978PubMedGoogle Scholar
  90. Slinker BK, Glantz SA: End-systolic and end-diastolic ventricular interaction. Am. J. Physiol. 251: H1062–1075, 1986PubMedGoogle Scholar
  91. Slinker BK, Glantz SA: The accuracy of inferring left ventricular volume from dimension depends on the frequency of information needed to answer a given question. Circ. Res. 56: 161–174, 1985PubMedGoogle Scholar
  92. Smiseth OA, Frais MA, Kingma I, Smith ER, Tyberg JV: Assessment of pericardial constraint in dogs. Circulation 71: 158–164, 1985PubMedCrossRefGoogle Scholar
  93. Smiseth OA, Scott-Douglas BW, Thompson CR, Smith ER, Tyberg JV: Nonuniformity of pericardial surface pressure in dogs. Circulation 75: 1229–1236, 1987PubMedCrossRefGoogle Scholar
  94. Spadaro J, Bing OHL, Gaasch WH, Weintraub RM: Pericardial modulation of right and left ventricular diastolic interaction. Circ. Res. 48: 233–238, 1981PubMedGoogle Scholar
  95. Stalcup SA, Mellins RB: Mechanical forces producing pulmonary edema in acute asthma. N. Engl. J. Med. 297: 592–596, 1977PubMedCrossRefGoogle Scholar
  96. Suga H, Sagawa K: Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35: 117–126, 1974PubMedGoogle Scholar
  97. Summer WR, Permutt S, Sagawa K, Shoukas AA, Bromberger-Barnea B: Effects of spontaneous respiration on canine left ventricular function. Circ. Res. 45: 719–728, 1979PubMedGoogle Scholar
  98. Szulczyk A, Szulczyk P, Zywuszko B: Analysis of reflex activity in cardiac sympathetic nerve induced by myelinated phrenic nerve afferents. Brain Res. 447: 109–115, 1988PubMedCrossRefGoogle Scholar
  99. Tolle FA, Judy WV, Yu PL, Markand ON: Reduced stroke volume related to pleural pressure in obstructive sleep apnea. J. Appl. Physiol. 55: 1718–1724, 1983PubMedGoogle Scholar
  100. Van Citters RL, Franklin DL, Rushmer RF: Left ventricular dynamics in dogs during anesthesia with alpha-chloralose and sodium pentobarbital. Am. J. Cardiol. 13: 349–354, 1964CrossRefGoogle Scholar
  101. Wallis TW, Robotham JL, Kindred MK: Mechanical heart-lung interaction with positive end-expiratory pressure. J. Appl. Physiol. 54: 1039–1047, 1983PubMedGoogle Scholar
  102. Wead WB, Norton JF: Effects of intrapleural pressure changes on canine left ventricular function. J. Appl. Physiol. 50: 1027–1035, 1981PubMedGoogle Scholar
  103. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung: relation to vascular and alveolar pressures. J. Appl. Physiol. 19: 713–724, 1964PubMedGoogle Scholar
  104. Wilcken DE, Charlier AA, Hoffman JIE, Guz A: Effects of alterations in aortic impedance on the performance of the ventricles. Circ. Res. 14: 283–293, 1964PubMedGoogle Scholar
  105. Winer BJ: Statistical principles in experimental design. McGraw-Hill, New York, 1971 Wise RA, Robotham JL, Summer WR: Effects of spontaneous ventilation on the circulation. Lung 159: 175–186, 1981CrossRefGoogle Scholar
  106. Yellin EL, Peskin C, Yoran, Koenigsberg M, Matsumoto M, Laniado S, McQueen D, Shore D, Frater RWM: Mechanisms of mitral valve motion during diastole. Am. J. Physiol. 241: H389–400, 1981PubMedGoogle Scholar
  107. Yin FCP: Ventricular wall stress. Circ. Res. 49: 829–842, 1981PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Jürgen Peters
    • 1
  1. 1.Abteilung für Klinische Anaesthesiologie Zentrum für AnaesthesiologieHeinrich-Heine-Universität DüsseldorfDüsseldorf 1Germany

Personalised recommendations