Skip to main content

Physiological Role of ß-Nerve Growth Factor and Its Possible Pathophysiological Implication in the Central Nervous System

  • Chapter
Integrative Biological Psychiatry

Abstract

Beta-nerve growth factor (NGF) is a well-known 26-kDa homodimeric protein, whose physiological functions are well established in the peripheral nervous system. There NGF has been shown to be essential for the ontogenetic development and maintenance of specialized properties of the sympathetic and neural crest-derived sensory neurons (for reviews, see Greene and Shooter 1980; Thoenen and Barde 1980; Levi-Montalcini 1987). Under physiological conditions, this neurotrophic factor is produced and released in limiting amounts by tissues densely innervated by NGF-sensitive neurons (Korsching and Thoenen 1983a; Heumann et al. 1984; Shelton and Reichardt 1984). Following release, NGF is bound by an NGF receptor on the surface of these neurite terminals, internalized and then transported together with NGF receptors (Korsching and Thoenen 1983b; Palmetier et al. 1984; Johnson et al. 1987; Raivich and Kreutzberg 1987). This apparently occurs in the form of an NGF-NGF receptor complex, which is transported retrogradely to the neuronal perikarya in sympathetic and primary sensory ganglia, where it exerts most of its neurotrophic effects by still unknown second-messenger mechanisms (for reviews, see Thoenen et al. 1985, 1987a; cf. Levi et al. 1988). The function of NGF as a retrograde messenger between peripheral target tissues and their innervating neurons was also recognized from previous observations demonstrating that any restriction of the availability of NGF to the perikarya of NGF-responsive neurons results in serious impairments of their function (Thoenen and Barde 1980; Johnson et al. 1986; Thoenen et al. 1987b): during limited periods of embryonic development administration of anti-NGF antibodies or interruption of the retrograde axonal transport of NGF results in a degeneration of the corresponding neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altavista MC, Bentivoglio AR, Crociani P, Rossi P, Albanese A (1988) Age-dependent loss of cholinergic neurons in basal ganglia of rats. Brain Res 455: 177–181

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Tennstedt A, Arendt A (1984) Correlation between cortical plaque count and neuronal loss in the nucleus basalis in Alzheimer’s disease. Neurosci Lett 48: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V (1987) Alzheimer’s disease as a presumptive threshold phenomenon. Neurobiol Aging 8: 552–554

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Bruce G, Hersh LB, Terry RD (1986) Choline acetyltransferase immunoreactivity in neuritic plaques of Alzheimer brain. Neurosci Lett 71: 229–234

    Article  PubMed  CAS  Google Scholar 

  • Auburger G, Heumann R, Hellweg R, Korsching S, Thoenen H (1987) Developmental changes of nerve growth factor and its mRNA in the rat hippocampus: comparison with choline acetyltransferase. Dev Biol 120: 322–328

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417

    Article  PubMed  CAS  Google Scholar 

  • Björklund A, Stenevi U (1981) In vivo evidence for a hippocampal adrenergic neurotrophic factor specifically released on septal deafferentation. Brain Res 229: 403–428

    Article  PubMed  Google Scholar 

  • Brayne C, Calloway P (1988) Normal ageing, impaired cognitive function, and senile dementia of the Alzheimer’s type: a continuum? Lancet 4: 1265–1267

    Article  Google Scholar 

  • Butcher LL, Woolf NJ (1986) Central cholinergic systems: synopsis of anatomy and overview of physiology and pathology. In: Scheibel AB, Wechsler AF, Brazier MAB (eds) The biological substrates of Alzheimer’s disease. UCLA Forum in Medical Sciences 27. Academic, Orlando, pp 73–86

    Google Scholar 

  • Cavicchioli L, Flanigan TP, Vantini G, Fusco M, Polato P, Toffano G, Walsh FS, Leon A (1989) NGF amplifies expression of NGF receptor messenger RNA in forebrain cholinergic neurons of rats. Eur J Neurosci 1: 258–262

    Article  PubMed  Google Scholar 

  • Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8: 521–545

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, de Long MR (1983) Alzheimer’s disease: a disease of cortical cholinergic innervation. Science 219: 1184–1189

    Article  PubMed  CAS  Google Scholar 

  • Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174: 788–794

    Article  PubMed  CAS  Google Scholar 

  • Dravid AR (1983) Deficits in cholinergic enzymes and muscarinic receptors in the hippocampus and striatum of senescent rats: effect of chronic hydergine treatment. Arch Int Phamacodyn Ther 264: 195–202

    CAS  Google Scholar 

  • Ebendal T (1989) NGF in CNS: experimental data and clinical implications. Prog Growth Factor Res 1: 143–159

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Wictorin K, Björklund A, Williams LR, Varon S, Gage FH (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329: 65–68

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Gage FH, Björklund A (1989) Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur J Neurosci 1: 34–45

    Article  PubMed  Google Scholar 

  • Fonnum F (1975) A rapid method for the determination of choline acetyltransferase. J Neurochem 24: 407–409

    Article  PubMed  CAS  Google Scholar 

  • Francis PT, Palmer AM, Sims NR, Bowen DM, Davison AN, Esiri MM, Neary D, Snowden JS, Wilcock GK (1985) Neurochemical studies of early-onset Alzheimer’s disease – possible influence on treatment. N Engl J Med 313: 7–11

    Article  PubMed  CAS  Google Scholar 

  • Fusco M, Oderfeld-Nowak B, Vantini G, Schiavo N, Gradkowska M, Zaremba M, Leon A (1989) Nerve growth factor affects uninjured adult rat septohippocampal cholinergic neurons. Neuroscience 33: 47–52

    Article  PubMed  CAS  Google Scholar 

  • Gage FH, Björklund A (1986) Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine-sensitive mechanism. J Neurosci 6: 2837–2847

    PubMed  CAS  Google Scholar 

  • Gage FH, Olejniczak P, Armstrong DM (1988) Astrocytes are important for sprouting in the septohippocampal circuit. Exp Neurol 102: 2–13

    Article  PubMed  CAS  Google Scholar 

  • Garvey WT, Huecksteadt TP, Birnbaum MJ (1989) Pretranslational suppression of an insulin-responsive glucose transporter in rats with diabetes mellitus. Science 245: 60–63

    Article  PubMed  CAS  Google Scholar 

  • Gasser UE, Weskamp G, Otten U, Dravid AR (1986) Time course of the elevation of nerve growth factor (NGF) content in the hippocampus and septum following lesions of the septohippocampal pathway in rats. Brain Res 376: 351–356

    Article  PubMed  CAS  Google Scholar 

  • Geddes JW, Monaghan DT, Cotman CW (1985) Plasticity of hippocampal circuitry in Alzheimer’s disease. Science 230: 1179–1181

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Peterson C (1981) Brain acetylcholine synthesis declines with senescence. Science 213: 674–676

    Article  PubMed  CAS  Google Scholar 

  • Gilad GM, Rabey JM, Tizabi Y, Gilad VH (1987) Age-dependent loss and compensatory changes of septohippocampal cholinergic neurons in two rat strains differing in longevity and response to stress. Brain Res 436: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG (1988) Alzheimer’s disease: its proteins and genes. Cell 52: 307–308

    Article  PubMed  CAS  Google Scholar 

  • Gnahn H, Hefti F, Heumann R, Schwab M, Thoenen H (1983) NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Dev Brain Res 9: 45–52

    Article  CAS  Google Scholar 

  • Goedert M, Fine A, Hunt SP, Ullrich A (1986) Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer’s disease. Mol Brain Res 1: 85–92

    Article  Google Scholar 

  • Gómez-Pinilla F, Cotman CW, Nieto-Sampedro M (1989) NGF receptor immunoreactivity in aged rat brain. Brain Res 479: 255–262

    Article  PubMed  Google Scholar 

  • Gould E, Butcher LL (1987) Transient expression of choline acetyltransferase-like immunoreactivity in Purkinje cells of the developing rat cerebellum. Dev Brain Res 34: 303–306

    Article  Google Scholar 

  • Greene LA, Shooter EM (1980) The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci 3: 353–402

    Article  PubMed  CAS  Google Scholar 

  • Griffm WST, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White III CL, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86: 7611–7615

    Article  Google Scholar 

  • Hefti F (1983) Is Alzheimer disease caused by lack of nerve growth factor? Ann Neurol 13: 109–110

    Article  PubMed  CAS  Google Scholar 

  • Hefti F, Dravid A, Hartikka J (1984) Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septohippocampallesions. Brain Res 293: 305–311

    Article  PubMed  CAS  Google Scholar 

  • Hefti F, Hartikka J, Eckenstein F, Gnahn H, Heumann R, Schwab M (1985) Nerve growth factor (NGF) increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience 14: 55–68

    Article  PubMed  CAS  Google Scholar 

  • Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after funbrial transection. J Neurosci 6: 2155–2162

    PubMed  CAS  Google Scholar 

  • Hefti F, Weiner WJ (1986) Nerve growth factor and Alzheimer’s disease. Ann Neurol 20: 275–281

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R, Hock C, Hartung H-D (1989a) An improved rapid and highly sensitive enzyme immunoassay for nerve growth factor. Technique 1: 43–48

    Google Scholar 

  • Hellweg R, Nitsch R, Hock C, Mayer G, Hoyer S (1989b) Changes of nerve growth factor levels in the central cholinergic system of aged learning-impaired rat resemble streptozotocin- induced impairments of brain glucose metabolism and learning abilities in adult rat. In: Kewitz H, Thomsen T, Bickel U (eds) Pharmacological interventions on central cholinergic mechanisms in senile dementia (Alzheimer’s disease). Zuckschwerdt, München, pp 180–184

    Google Scholar 

  • Hellweg R, Hartung H-D (1990) Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res 26: 258–267

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R, Fischer W, Hock C, Gage FH, Björklund A, Thoenen H (1990) Nerve growth factor levels and choline acetyltransferase activity in the brain of aged rats with spatial memory impairments. Brain Res 537: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R, Wöhrle M, Hartung H-D, Stracke H, Hock C, Federlin K (1991) Diabetes mellitus-associated decrease in nerve growth factor levels is reversed by allogeneic pancreatic islet transplantation. Neurosci Lett 125:1–4

    Article  PubMed  CAS  Google Scholar 

  • Heumann R, Korsching S, Thoenen H (1984) Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J 3: 3183–3189

    PubMed  CAS  Google Scholar 

  • Higgins GA, Koh S, Chen KS, Gage FH (1989) NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 3: 247–256

    Article  PubMed  CAS  Google Scholar 

  • Honegger P, Lenoir D (1982) Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev Brain Res 3: 229–238

    Article  CAS  Google Scholar 

  • Hornberger JC, Buell SJ, Flood DG, McNeill TH, Coleman PD (1985) Stability of numbers but not size of mouse forebrain cholinergic neurons to 53 months. Neurobiol Aging 6: 269–275

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (1988) Glucose and related brain metabolism in dementia of Alzheimer type and its morphological significance. Age 11: 158–166

    Article  Google Scholar 

  • Hoyer S, Nitsch R (1988) Abnormalities in cerebral carbohydrate and related protein metabolism in dementia of Alzheimer type point to a deficiency of neuronal insulin receptor. In: Agnoli A, Cahn J, Lassen N, Mayeux R (eds) Senile dementias. Libbey, Paris, pp 131–136

    Google Scholar 

  • Hoyer S, Oesterreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J Neurol 235: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Johnson EM, Rich KM, Yip HK (1986) The role of NGF in sensory neurons in vivo. Trends Neurosci 1: 33–37

    Article  Google Scholar 

  • Johnson EM, Taniuchi M, Clark HB, Springer JE, Koh S, Tayrien MW, Loy R (1987) Demonstration of the retrograde transport of nerve growth factor (NGF) receptor in the peripheral and central nervous system. J Neurosci 7: 923–929

    PubMed  CAS  Google Scholar 

  • Koh S, Loy R (1988) Age-related loss of nerve growth factor sensitivity in rat basal forebrain neurons. Brain Res 440: 396–401

    Article  PubMed  CAS  Google Scholar 

  • Koh S, Chang P, Collier TJ, Loy R (1989) Loss of NGF receptor immunoreactivity in basal forebrain neurons of aged rats: correlation with spatial memory impairment. Brain Res 498: 397–404

    Article  PubMed  CAS  Google Scholar 

  • Konkol RJ, Mailman RB, Bendeich EG, Garrison AM, Mueller RA, Breese GR (1978) Evaluation of the effects of nerve growth factor and anti-nerve growth factor on the development of central catecholaminergic neurons. Brain Res 144: 277–285

    Article  PubMed  CAS  Google Scholar 

  • Korsching S, Thoenen H (1983a) Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc Natl Acad Sci USA 80: 3513–3513

    Article  PubMed  CAS  Google Scholar 

  • Korsching S, Thoenen H (1983b) Quantitative demonstration of the retrograde axonal transport of endogenous nerve growth factor. Neurosci Lett 39: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Korsching S, Auburger G, Heumann R, Scott J, Thoenen H (1985) Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J 4: 1389–1393

    PubMed  CAS  Google Scholar 

  • Korsching S, Heumann R, Thoenen H, Hefti F (1986) Cholinergic denervation of the rat hippocampus by funbrial transection leads to a transient accumulation of nerve growth factor (NGF) without change in mRNANGF content. Neurosci Lett 66: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Kromer LF (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235: 214–216

    Article  PubMed  CAS  Google Scholar 

  • Large TH, Bodary SC, Clegg DO, Weskamp G, Otten U, Reichardt LF (1986) Nerve growth factor gene expression in the developing rat brain. Science 234: 352–355

    Article  PubMed  CAS  Google Scholar 

  • Lärkfors L, Strömberg I, Ebendal T, Olson L (1987) Nerve growth factor protein level increases in the adult rat hippocampus after a specific cholinergic lesion. J Neurosci Res 18: 525–531

    Article  PubMed  Google Scholar 

  • Levi A, Biocca S, Cattaneo A, Calissano P (1988) The mode of action of nerve growth factor in PC 12 cells. Mol Neurobiol 2: 201–226

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor: thirty-five years later. EMBO J 6: 1145–1154

    PubMed  CAS  Google Scholar 

  • Lindsay RM (1979) Adult brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurones. Nature 282: 80–82

    Article  PubMed  CAS  Google Scholar 

  • Marx J (1990) NGF and Alzheimer’s: hopes and fears. Science 247: 408–410

    Article  PubMed  CAS  Google Scholar 

  • Mayer G, Nitsch R, Hoyer S (1990) Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res 532: 95–100

    Article  PubMed  CAS  Google Scholar 

  • Mobley WC, Neve RL, Prusiner SB, McKinley MP (1988) Nerve growth factor increases mRNA levels for the prion protein and the ß-amyloid protein precursor in developing hamster brain. Proc Natl Acad Sci USA 85: 9811–9815

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11: 47–60

    Article  PubMed  CAS  Google Scholar 

  • Nitsch R, Mayer G, Hoyer S (1989) The intracerebroventricularly streptozotocin-treated rat: impairment of cerebral glucose metabolism resembles the alterations of carbohydrate metabolism of the brain in Alzheimer’s disease. J Neural Transm (P-D Sect) 1: 109–110

    Article  Google Scholar 

  • Nukina N, Ihara Y (1983) Immunocytochemical study on senile plaques in Alzheimer’s disease. Proc Japan Acad 59: 288–292

    Article  CAS  Google Scholar 

  • Otten U (1984) Nerve growth factor and the peptidergic sensory neurons. Trends Pharmacol 7:307–310

    Article  Google Scholar 

  • Palmetier MA, Hartman BK, Johnson EM (1984) Demonstration of retrogradely transported endogenous nerve growth factor in axons of sympathetic neurons. J Neurosci 4: 751–756

    Google Scholar 

  • Pearson RCA, Sofroniew MV, Cuello AC, Powell TPS, Eckenstein F, Esiri MM, Wilcock GK (1983) Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res 289: 375–379

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 25: 1457–1459

    Article  Google Scholar 

  • Perry EK, Blessed G, Tomlinson BE (1981) Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol Aging 2: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Curtis M, Dick DJ, Candy JM, Atack JR, Bloxham CA, Blessed G, Fairbairn A, Tomlinson BE, Perry RH (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48: 413–421

    Article  PubMed  CAS  Google Scholar 

  • Perry E (1988) Acetylcholine and Alzheimer’s disease. Br J Psychol 152: 737–740

    Article  CAS  Google Scholar 

  • Pioro EP, Cuello AC (1988) Purkinje cells of adult rat cerebellum express nerve growth factor receptor immunoreactivity: light microscopic observations. Brain Res 455: 182–186

    Article  PubMed  CAS  Google Scholar 

  • Probst A, Basler V, Bron B, Ulrich J (1983) Neuritic plaques in senile dementia of Alzheimer type: a Golgi analysis in the hippocampal region. Brain Res 268: 249–254

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Kreutzberg GW (1987) Expression of growth factor receptors in injured nervous tissue. I. Axotomy leads to a shift in the cellular distribution of specific ß-nerve growth factor binding in the injured and regenerating PNS. J Neurocytol 16: 689–700

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Hellweg R, Graeber MB, Kreutzberg GW (1990) The expression of growth factor receptors during nerve regeneration. Restor Neurol Neurosci 1: 217–223

    PubMed  CAS  Google Scholar 

  • Rama Sastry BV, Janson VE, Jaiswal N, Tayeb OS (1983) Changes in enzymes of the cholinergic system and acetylcholine release in the cerebra of aging male Fischer rats. Pharmacology 26: 61–72

    Article  Google Scholar 

  • Reinikainen KJ, Riekkinen PJ, Paljärvi L, Soininen H, Helkala E-L, Jolkkonen J, Laakso M (1988) Cholinergic deficit in Alzheimer’s disease: a study based on CSF and autopsy data. Neurochem Res 13:135–146

    Article  PubMed  CAS  Google Scholar 

  • Risau W, Wolburg H (1990) Development of the blood-brain barrier. Trends Neurosci 13: 174–178

    Article  PubMed  CAS  Google Scholar 

  • Rohrer H, Hofer M, Hellweg R, Korsching S, Stehle AD, Saadat S, Thoenen H (1988) Antibodies against mouse nerve growth factor interfere in vivo with the development of avian sensory and sympathetic neurones. Development 103: 545–552

    PubMed  CAS  Google Scholar 

  • Schwab M, Otten U, Agid Y, Thoenen H (1979) Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res 168: 473–483

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JP, Pearson J, Johnson EM (1982) Effect of exposure to anti-NGF on sensory neurons of adult rats and guinea pigs. Brain Res 244: 378–381

    Article  PubMed  CAS  Google Scholar 

  • Seiler M, Schwab M (1984) Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res 300: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1989) Biochemistry of altered brain proteins in Alzheimer’s disease. Ann Rev Neurosci 12: 463–490

    Article  PubMed  CAS  Google Scholar 

  • Shelton DL, Reichardt LF (1984) Expression of the ß-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc Natl Acad Sci USA 81: 7951–7955

    Article  PubMed  CAS  Google Scholar 

  • Sherman KA, Kuster JE, Dean RL, Bartus RT, Friedman E (1981) Presynaptic cholinergic mechanisms in brain of aged rats with memory impairments. Neurobiol Aging 2: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, Marek KL, Bowen DM, Davison AN (1982) Production of [14C]carbon dioxide from [U-14C]glucose in tissue prisms from aging rat brain. J Neurochem 38: 488–492

    Article  PubMed  CAS  Google Scholar 

  • Slotkin TA, Seidler FJ, Crain BJ, Bell JM, Bissette G, Nemeroff CB (1990) Regulatory changes in presynaptic cholinergic function assessed in rapid autopsy material from patients with Alzheimer’s disease: implications for etiology and therapy. Proc Natl Acad Sci USA 87: 2452–2455

    Article  PubMed  CAS  Google Scholar 

  • Spranger M, Lindholm D, Bandtlow C, Heumann R, Gnahn H, Näher-Noé M, Thoenen H (1990) Regulation of nerve growth factor (NGF) synthesis in the rat central nervous system: comparison between the effects of interleukin-1 and various growth factors in astrocyte cultures and in vivo. Eur J Neurosci 2: 69–76

    Article  PubMed  Google Scholar 

  • Springer JE, Loy R (1985) Intrahippocampal injections of antiserum to nerve growth factor inhibit sympathohippocampal sprouting. Brain Res Bull 15: 629–634

    Article  PubMed  CAS  Google Scholar 

  • Springer JE, Tayrien MW, Loy R (1987) Regional analysis of age-related changes in the cholinergic system of the hippocampal formation and basal forebrain of the rat. Brain Res 407:180–184

    Article  PubMed  CAS  Google Scholar 

  • Strong R, Hicks P, Hsu L, Bartus RT, Enna SJ (1980) Age-related alterations in the rodent brain cholinergic system and behavior. Neurobiol Aging 1: 59–63

    Article  PubMed  CAS  Google Scholar 

  • Taniuchi M, Schweitzer JB, Johnson EM (1986) Nerve growth factor receptor molecules in rat brain. Proc Natl Acad Sci USA 83: 1950–1954

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Davies P (1980) Dementia of the Alzheimer type. Ann Rev Neurosci 3: 77–95

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H, Barde YA (1980) Physiology of nerve growth factor. Physiol Rev 60: 1284–1335

    PubMed  CAS  Google Scholar 

  • Thoenen H, Edgar D (1985) Neurotrophic factors. Science 229: 238–242

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H, Korsching S, Heumann R, Acheson A (1985) Nerve growth factor. In: Ciba Foundation Symposium 116, growth factors in biology and medicine. Pitman, London, pp 113–128

    Google Scholar 

  • Thoenen H, Bandtlow C, Heumann R (1987a) The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol 109: 145–178

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H, Auburger G, Hellweg R, Heumann R, Korsching S (1987b) Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system. In: Dowdall MJ, Hawthorne IN (eds) Cholinergic mechanisms, vol 6, cellular and molecular basis of cholinergic function. Horwood, Chichester, pp 379–388

    Google Scholar 

  • Vantini G, Schiavo N, Di Martino A, Polato P, Triban C, Callegaro L, Toffano G, Leon A (1989) Evidence for a physiological role of nerve growth factor in the central nervous system of neonatal rats. Neuron 3: 267–273

    Article  PubMed  CAS  Google Scholar 

  • Vijayan VK (1977) Cholinergic enzymes in the cerebellum and the hippocampus of the senescent mouse. Exp Geront 12: 7–11

    Article  CAS  Google Scholar 

  • Weskamp G, Gasser UE, Dravid AR, Otten U (1986) Fimbria-fornix lesion increases nerve growth factor content in adult rat septum and hippocampus. Neurosci Lett 70: 121–126

    Article  PubMed  CAS  Google Scholar 

  • Whittemore SR, Ebendal T, Lärkfors L, Olson L, Seiger A, Stromberg I, Persson H (1986) Developmental and regional expression of ß nerve growth factor messenger RNA and protein in the rat central nervous system. Proc Natl Acad Sci USA 83: 817–821

    Article  PubMed  CAS  Google Scholar 

  • Whittemore SR, Seiger A (1987) The expression, localization and functional significance of 6-nerve growth factor in the central nervous system. Brain Res Rev 12: 439–464

    Article  CAS  Google Scholar 

  • Will B, Hefti F (1985) Behavioural and neurochemical effects of chronic intraventricular injections of nerve growth factor in adult rats with fimbria lesions. Behav Brain Res 17: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Williams LR, Varon S, Peterson GM, Wictorin K, Fischer W, Björklund A, Gage FH (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci USA 83: 9231–9235

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA, Caceves A, Duffy LK (1990) Nerve growth factor potentiates the neurotoxicity of ß amyloid. Proc Natl Acad Sci USA 87:9020–9023

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hellweg, R., Hock, C., Hartung, H.D. (1992). Physiological Role of ß-Nerve Growth Factor and Its Possible Pathophysiological Implication in the Central Nervous System. In: Emrich, H.M., Wiegand, M. (eds) Integrative Biological Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77168-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77168-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77170-5

  • Online ISBN: 978-3-642-77168-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics