Skip to main content

Peptides as Neuronal Signalling Molecules

  • Chapter
Integrative Biological Psychiatry
  • 40 Accesses

Abstract

Neuropeptides form a major class of messenger substances in nervous systems. Current research suggests that neuropeptides playa key role in synaptic signalling and allow specific subsystems of the brain to communicate. In addition to the classical synaptic mechanisms, information transfer can also occur via the extracellular space (Agnati et al. 1986a,b). Neuropeptides are considered to be major candidates for such integrative actions and long-term changes in neuronal excitability which alter behavior, mood, and mental processes as well as endocrine and autoregulatory functions (Fuxe et al. 1988). The mechanisms underlying the physiological role of neuropeptides in the mammalian peripheral (North 1986) and central (Bloom 1984, 1988) nervous system (CNS) remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnati LF, Puxe K, Merlo Pich E et al. (1986a) Aspects of the integrative capacities of the central nervous system: evidence for “volume transmission” and its possible relevance for receptor-receptor interactions. In: Puxe K, Agnati LF (eds) Receptor-receptor interactions: a new intramembrane integrative mechanism. Macmillan, London, pp 236–249

    Google Scholar 

  • Agnati LF, Puxe K, Zoli M, Ozini I, Toffano G, Perraguti P (1986b) A correlation analysis of the regional distribution of central enkephalin and β-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main type of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol Scand 128: 201–207

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1987) Inositol triphosphate and diacylglycerol: two interacting second messengers. Ann Rev Biochem 56: 159–193

    Article  PubMed  CAS  Google Scholar 

  • Bloom FE (1984) General features of chemically identified neurons. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Biomedical Elsevier, pp 1–22

    Google Scholar 

  • Bloom FE (1988) Neurotransmitters: past, present, and future directions. FASEB J 2: 32–41

    PubMed  CAS  Google Scholar 

  • Christie MJ, North RA (1988) Agonists at ÎĽ-opioid, M2-muscarinic and GABAB-receptors increase the same potassium conductance in rat lateral parabrachial neurones. Br J Pharmacol 95: 896–902

    PubMed  CAS  Google Scholar 

  • Chuang De-Maw (1989) Neurotransmitter receptors and phosphoinositide turnover. Ann Rev Pharmacol Toxicol 29: 71–110

    Article  CAS  Google Scholar 

  • Cotman CW, Monaghan DT, Ganong AT (1988) Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Ann Rev Neurosci 11: 61–80

    Article  PubMed  CAS  Google Scholar 

  • Deisz RA, Madamba S, Moore S, Siggins GR, Sutor B, Zieglgänsberger W (1988) Regulation of neuronal excitability by opioid peptides: intracellular analysis in several brain regions. In: Illes P, Farsang C (eds) Regulatory role of opioid peptides. VCH Press, Weinheim New York, pp 147–164

    Google Scholar 

  • Dodt H-U, Zieglgänsberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537:333–336

    Article  PubMed  CAS  Google Scholar 

  • Ferron A, Siggins GR, Bloom FE (1985) Vasoactive intestinal polypeptide acts synergistically with norepinephrine to depress spontaneous discharge rate in cerebral cortical neurons. Proc Natl Acad Sci U.S.A. 82: 8810–8812

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Hartstrand A, Cintra A, Aronsson M, Zoli M, Gustafson J-A (1988) Principles for the hormone regulation of wiring transmission and volume transmission in the central nervous system. In: Ganten D, Pfaff D (eds) Current topics in neuroendocrinology, vol 8. Springer, Berlin Heidelberg New York, pp 1–53

    Google Scholar 

  • Gregor P, Mano I, Maoz I, McKoewn M, Teichberg VI (1989) Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature 342: 689–691

    Article  PubMed  CAS  Google Scholar 

  • Harlan RE, Shivers BD, Romano QJ, Howells RD, Pfaff DW (1987) Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. J Comp Neurol 258:159–184

    Article  PubMed  CAS  Google Scholar 

  • Herkenham H (1987) Mismatches between neurotransmitter and receptor localization in brain: observations and implications. Neuroscience 23: 1–38

    Article  PubMed  CAS  Google Scholar 

  • Hescheler J, Rosenthal W, Trautwein W, Schultz G. (1987) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325: 445–447

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M., O’Shea-Greenfield A., Rogers S.W., Heinemann S (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342: 643–648

    Article  PubMed  CAS  Google Scholar 

  • Howe JR, Sutor B, Zieglgänsberger W (1987) Baclofen reduces postsynaptic potentials of rat neocortical neurones by an action other than its hyperpolarizing action. J Physiol 384: 539–569

    PubMed  CAS  Google Scholar 

  • Lacey MQ, Mercuri NB, North RA (1989) Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J Neurosci 9:1233–1241

    PubMed  CAS  Google Scholar 

  • Macdonald RL, Werz MA (1986) Dynorpin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J Physiol (Lond) 377: 237–249

    CAS  Google Scholar 

  • Magistretti PJ, Morrison JH (1985) VIP neurons in the neocortex. Trends Neurosci 8: 7–8

    Article  CAS  Google Scholar 

  • Magistretti PJ, Morrison JH (1988) Noradrenaline and vasoactive intestinal peptide-containing neuronal systems in neocortex: functional convergence with contrasting morphology. Neuroscience 24:367–378

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Schorderet M (1984) VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex. Nature 308: 280–284

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Schorderet M (1985) Norepinephrine and histamine potentiate the increases in cyclic adenosine 3’,5’ –monophosphate elicited by vasoactive intestinal polypeptide in mouse cerebral cortical slices: mediation by α1-adrenergic and H1-histaminergic receptors. J Neurosci 5:363–368

    Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7: 2445–2464

    PubMed  CAS  Google Scholar 

  • Marrero H, Astion ML, Coles JA, Orkand RK (1989) Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature 339:378–380

    Article  PubMed  CAS  Google Scholar 

  • McFadzean I (1988) The ionic mechanisms underlying opioid actions. Neuropeptides 11:173–180

    Article  PubMed  CAS  Google Scholar 

  • Miyake M, Christie MJ, North RA (1989) Single potassium channels opened by opioids in rat locus coeruleus neurons. Proc Natl Acad Sci USA 86: 3419–3422

    Article  PubMed  CAS  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Ann Rev Pharmacol Toxicol 29: 365–402

    Article  CAS  Google Scholar 

  • Morrison JH, Magistretti PJ, Benoit R, Bloom FE (1984) The distribution and morphological characteristics of the intracortical VIP-positive cell: an immunohistochemical analysis. Brain Res 292: 269–282

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA (1988) Neurotransmitter regulated ion channels. Science 241: 545–555

    Article  PubMed  CAS  Google Scholar 

  • North RA (1986) Mechanisms of autonomic integration. In: Bloom FE (ed) Handbook of physiology, vol on intrinsic regulatory systems of the brain. The American Physiological Society, Bethesda, Maryland, pp 115–153

    Google Scholar 

  • North RA, Williams JT, Surprenant AM, Christie MJ (1987) ÎĽ and δ receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA 84: 5487–5491

    Article  PubMed  CAS  Google Scholar 

  • Parnavelas JG, Papadopoulos GC (1989) The monoaminergic innervation of the cerebral cortex is not diffuse and nonspecific. Trends Neurosci 12: 315–320

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Gruol DL (1986) Synaptic mechanisms in the vertebrate central nervous system. In: Bloom FE (ed) Handbook of physiology, vol on intrinsic regulatory systems of the brain. The American Physiological Society, Bethesda, Maryland, pp 1–114

    Google Scholar 

  • Siggins GR, Zieglgänsberger W (1981) Morphine and opioid peptides reduce inhibitory synaptic potentials in hippocampal pyramidal cells in vitro without alteration of membrane potential. Proc Natl Acad Sci USA 78: 5235–5239

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF (1988) The molecular basis of opioid receptor function. Endocr Rev 9: 200–212

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H, Kettenmann H, Backus KH, Schachner H (1988) Glutamate opens Na+/K+ channels in cultured astrocytes. Glia 1: 328–336

    Article  PubMed  CAS  Google Scholar 

  • Tempel A, Zukin RS (1987) Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci U.S.A. 84: 4308–4412

    Article  PubMed  CAS  Google Scholar 

  • Usowicz MM, Gallo V, Cull-Candy SG (1989) Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature 339: 380–383

    Article  PubMed  CAS  Google Scholar 

  • Williams JT, North RA, Tokimasa T (1988) Inward rectification of resting and opiateactivated potassium currents in rat locus coeruleus neurons. J Neurosci 8: 4299–4306

    PubMed  CAS  Google Scholar 

  • Williams JT, Zieglgänsberger W (1981) Mature spinal ganglion cells are not sensitive to opiate receptor mediated actions. Neurosci Lett 21: 211–216

    Article  PubMed  CAS  Google Scholar 

  • Zieglgänsberger W (1986) Central control of nociception. In: Bloom FE (ed) Handbook of physiology, vol on intrinsic regulatory systems of the brain. The American Physiological Society, Bethesda, Maryland, pp 581–645

    Google Scholar 

  • Zieglgänsberger W, French ED, Siggins GR, Bloom FE (1979) Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science 205: 415–417

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zieglgänsberger, W., Dodt, HU., Deisz, R.A., Pawelzik, H. (1992). Peptides as Neuronal Signalling Molecules. In: Emrich, H.M., Wiegand, M. (eds) Integrative Biological Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77168-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77168-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77170-5

  • Online ISBN: 978-3-642-77168-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics