Curve and Surface Interrogation

  • Hans Hagen
  • Stefanie Hahmann
  • Thomas Schreiber
  • Ernst Gschwind
  • B. Wördenweber
  • Y. Nakajima
Part of the Computer Graphics: Systems and Applications book series (COMPUTER GRAPH.)


Free-form curves and surfaces are very important for sophisticated CAD/CAM Systems. Apart from the geometric modelling aspect of these curves and surfaces, the analysis of their quality is a necessary tool in the design and construction process. The purpose of this paper is to give a critical survey on curve and surface interrogation methods and to present generalized focal surfaces as a new surface interrogation tool.


Cage Ozone Dupin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Hagen, G.-P. Bonneau. Variational design of smooth bezier surfaces. In to be published in Computing. Google Scholar
  2. [2]
    H. Hagen, Th. Schreiber, E. Gschwind (1990). Methods for surface interrogation. In Proceedings Visualization’90, pp. 187–193.Google Scholar
  3. [3]
    R. Hartwig, H. Nowacki (1982). Isolinien und Schnitte in Coonschen Flächen. In H. Nowacki, editor, Geometrisches Modellieren, Informatik-Fachberichte 65, pp. 329–394. Springer Verlag.Google Scholar
  4. [4]
    J. Hoschek (1971). Liniengeometrie. BI Zürich.MATHGoogle Scholar
  5. [5]
    J. Hoschek (1984). Detecting regions with undesirable curvature. CAGD, 1:183–192.MATHGoogle Scholar
  6. [6]
    J. Hoschek (1985). Smoothing of curves and surfaces. CAGD, 2:97–105.MathSciNetMATHGoogle Scholar
  7. [7]
    R. Klass (1980). Correction of local surface irregularities using reflection lines. CAD, 12:73–77.Google Scholar
  8. [8]
    Th. Poeschi (1984). Detecting surface irregularities using isophotes. CAGD, 1:163–168.Google Scholar
  9. [9]
    H. Pottmann (1988). Eine Verfeinerung der Isophotenmethode zur Qualitätsanalyse von Freiformflächen. CAD und Computergraphik, 4:99–109.Google Scholar
  10. [10]
    H. Pottmann, H. Hagen, A. Divivier (1991). Visualization functions on a surface. Journal of Visualization and Computer Animation, 2:52–58.CrossRefGoogle Scholar
  11. [11]
    K. Strubecker (1959). Differentialgeometrie III. De Gruyter Berlin.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Hans Hagen
  • Stefanie Hahmann
  • Thomas Schreiber
  • Ernst Gschwind
  • B. Wördenweber
  • Y. Nakajima

There are no affiliations available

Personalised recommendations