Volume Visualization in Medicine: Techniques and Applications

  • Andreas Pommert
  • Michael Bomans
  • Martin Riemer
  • Ulf Tiede
  • Karl Heinz Höhne
Part of the Computer Graphics: Systems and Applications book series (COMPUTER GRAPH.)

Abstract

Three-dimensional visualization of medical objects from tomographic volume data is increasingly considered useful in various fields. This paper reviews methods for all steps of the 3D imaging pipeline from data preprocessing to object definition and display, with Special emphasis on advanced segmentation methods and surface- and voxel-based rendering techniques. Furthermore, multimodality matching, data manipulation, and aspects of image fidelity and implementation are discussed. Methods are illustrated with applications in craniofacial surgery, traumatology, neurosurgery, radiotherapy, and medical education.

Keywords

Attenuation Assure Beach Chalk Zucker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Adams, W. Krybus, D. Meyer-Ebrecht, R. Rueger, J.M. Gilsbach, R. Moesges, G. Schloendorff (1990). Computer-Assisted Surgery. IEEE Computer Graphics & Appl, 10(3):43–51.CrossRefGoogle Scholar
  2. [2]
    S.R. Arridge (1990). Manipulation of Volume Data for Surgical Simulation. In K.H. Höhne, et al., editors, 3D-Imaging in Medicine: Algorithms, Systems, Applications, pp. 289–300. Springer-Verlag, Berlin.Google Scholar
  3. [3]
    E. Artzy, G. Frieder, G.T. Herman (1981). The Theory, Design, Implementation and Evaluation of a Three-Dimensional Surface Detection Algorithm. Computer Graphics and Image Processing, 15(l):l-24.Google Scholar
  4. [4]
    H.H. Baker (1989). Building Surfaces of Evolution: the Weaving Wall. Comput. Vis., 3:51–71.Google Scholar
  5. [5]
    D.H. Ballard, CM. Brown (1982). Computer Vision. Prentice-Hall Inc., Engle-wood Cliffs, NJ.Google Scholar
  6. [6]
    C. Barillot, B. Gilbaud, L.M. Luo, J.M. Scarabin (1985). 3-D Repräsentation of Anatomie Structures from CT Examinations. In Proc. SPIE 602: Biostereometrics ’85, pp. 307–314.Google Scholar
  7. [7]
    D.R. Bernier, P.E. Christian, J.K. Langman, L.D. Wells (1989). Nuclear Medicine: Technology and Techniques. C. V. Mosby Co., St. Louis, MO.Google Scholar
  8. [8]
    J.F. Blinn (1982). Light Reflection Functionsfor Simulation of Clouds and Dusty Surfaces. Computer Graphics, 16(3):21–29.CrossRefGoogle Scholar
  9. [9]
    J.D. Boissonnat (1988). Shape Reconstruction from Planar Cross Sections. Computer Vision, Graphics and Image Processing, 44(l):l-29.Google Scholar
  10. [10]
    M. Bomans (in preparation). Vergleich verschiedener Verfahren und Entwicklung eines kombinierten Verfahrens zur Segmentation von Kernspintomogrammen des Kopfes. Ph. D. thesis, Dept. of Computer Science, University of Hamburg.Google Scholar
  11. [11]
    M. Bomans, K.H. Höhne, U. Tiede, M. Riemer (1990). 3D-Segmentation of MR-Images of the Head for SD-Display. IEEE Trans. Med. Imaging, MI-9(2):177–183.CrossRefGoogle Scholar
  12. [12]
    M. Bomans, M. Riemer, U. Tiede, K.H. Höhne (1987). 3D-Segmentation von Kernspin-Tomogrammen. In E. Paulus, editor, Mustererkennung 1987, Proc. 9. DAGM-Symposium, pp. 231–235. Springer-Verlag, Berlin.Google Scholar
  13. [13]
    G.J. Brelstaff, M.C. Ibison, P.J. Elliot (1990). Edge-Region Integration for Segmentation of MR Images. In Proc. British Machine Vision Conference, BMVC ’90, pp. 139–144.Google Scholar
  14. [14]
    L.J. Brewster, S.S. Trivedi, H.K. Tuy, J.K. Udupa (1984). Interactive Surgical Planning. IEEE Computer Graphics & Appi, 4(3):31–40.CrossRefGoogle Scholar
  15. [15]
    M.E. Brummer, R.M. Mersereau, R.L. Eisner, R.R.J. Lewine (1991). Automatic Detection of Brain Contours in MRI Data Sets. In A.C.F. Colchester, D.J. Hawkes, editors, Information Processing in Medical Imaging, Proc. IPMI ’91, pp. 188–204. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  16. [16]
    J. Canny (1985). A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Machine Intell, PAMI-8(6):679–698.CrossRefGoogle Scholar
  17. [17]
    L.S. Chen, G.T. Herman, R.A. Reynolds, J.K. Udupa (1985). Surface Shading in the Cuberille Environment. IEEE Computer Graphics & Appl., 5(12):33–43.MATHCrossRefGoogle Scholar
  18. [18]
    S.-Y. Chen, W.-C. Lin, C.-C. Liang, C.-T. Chen (1990). Improvement on Dynamic Elastic Interpolation Technique for Reconstructing 3-D Öbjects from Serial Cross Sections. IEEE Trans. Med. Imaginq, MI-9(l):71–83.CrossRefGoogle Scholar
  19. [19]
    H.E. Cline, CX. Dumoulin, H.R. Hart, W.E. Lorensen, S. Ludke (1987). 3D Reconstruction of the Brain from Magnetic Resonance Images Using A Connectivity Algorithm. Magn. Reson. Imaging, 5:345–352.CrossRefGoogle Scholar
  20. [20]
    H.E. Cline, W.E. Lorensen, R. Kikinis, F. Jolesz (1990). Three-Dimensional Segmentation of MR Images of the Head Using Probability and Connectivity. J. Comput. Assist Tomogr., 14(6):1037–1045.CrossRefGoogle Scholar
  21. [21]
    H.E. Cline, W.E. Lorensen, S. Ludke, C.R. Crawford, B.C. Teeter (1988). Two Algorithms for Three-Dimensional Reconstruction of Tomograms. Med. Phys., 15(3):320–327.CrossRefGoogle Scholar
  22. [22]
    H.E. Cline, W.E. Lorensen, S.P. Souza, F.A. Jolesz, R. Kikinis, G. Gerig, T.E. Kennedy (1991). 3D Surface Rendered MR Images of the Brain and its Vascu-lature. J. Comput. Assist. Tomogr., 15(2):344–351.CrossRefGoogle Scholar
  23. [23]
    DJ. David, D.C. Hemmy, R.D. Cooter (1990). Craniofacial Deformities: Atlas of Three-Dimensional Reconstruction from Computed Tomography. Springer-Verlag, New York.Google Scholar
  24. [24]
    R.A. Drebin, L. Carpenter, P. Hanrahan (1988). Volume Rendering. Computer Graphics, 22(4):65–74.CrossRefGoogle Scholar
  25. [25]
    R.A. Drebin, D. Magid, D.D. Robertson, E.K. Fishman (1989). Fidelity of Three-dimensional CT Imaging for Detecting Fracture Gaps. J. Comput. Assist. Tomogr., 13(3):487–489.CrossRefGoogle Scholar
  26. [26]
    R.O. Duda, P.E. Hart (1973). Pattern Classification and Scene Analysis. John Wiley and Sons, New York.MATHGoogle Scholar
  27. [27]
    H.-H. Ehricke, G. Laub (1990). Combined 3D-Display of Cerebral Vasculature and Neuroanatomic Structures in MRI. In K.H. Höhne, et al., editors, 3D-Imaging in Medicine: Algorithms, Systems, Applications, pp. 229–239. Springer-Verlag, Berlin.Google Scholar
  28. [28]
    E.K. Fishman, D.R. Ney, D. Magid (1990). Three-Dimensional Imaging: Clinical Applications in Orthopedics. In K.H. Höhne, et al., editors, 3D-Imaging in Medicine: Algorithms, Systems, Applications, pp. 425–440. Springer-Verlag, Berlin.Google Scholar
  29. [29]
    J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes (1990). Computer Graphics: Principles and Practice, Second edition. Addison-Wesley Publ. Comp., Reading, MA.Google Scholar
  30. [30]
    G. Frieder, D. Gordon, R.A. Reynolds (1985). Back-to-Front Display of Voxel-Based Objects. IEEE Computer Graphics & AppL, 5(l):52–59.CrossRefGoogle Scholar
  31. [31]
    H. Fuchs (1990). Systems for Display of Three-Dimensional Medical Image Data. In K.H. Höhne, et al., editors, 3D-Imaging in Medicine: Algorithms, Systems, Applications, pp. 315–331. Springer-Verlag, Berlin.Google Scholar
  32. [32]
    H. Fuchs, Z.M. Kedem, S.P. Uselton (1977). Optimal Surface Reconstruction from Planar Contours. Commun. ACM, 20(10):693–702.MathSciNetMATHGoogle Scholar
  33. [33]
    G. Gerig, J. Martin, R. Kikinis, O. Kubier, M. Shenton, F.A. Jolesz (1991). Automating Segmentation of Dual-Echo MR Head Data. In A.C.F. Colchester, D. Hawkes, editors, Information Processing in Medical Imaging, Proc. IPMI ’91, pp. 175–187. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  34. [34]
    S.M. Goldwasser, R.A. Reynolds, T. Bapty, D. Baraff, J. Summers, D.A. Talton, E. Walsh (1985). Physicians Workstation With Real Time Performance. IEEE Computer Graphics & Appi, 5:44–57.CrossRefGoogle Scholar
  35. [35]
    D. Gordon, R.A. Reynolds (1985). Image Space Shading of 3-Dimensional Objects. Computer Vision, Graphics and Image Processing, 29:361–376.CrossRefGoogle Scholar
  36. [36]
    R. Hall (1986). A Characterization of Illumination Models and Shading Tech-niques. Visual Comput., 2:268–277.CrossRefGoogle Scholar
  37. [37]
    D.C. Hemmy, DJ. David, G.T. Herman (1983). Three-Dimensional Reconstruction of Craniofacial Deformity Using Computed Tomography. Neurosurgery, 13:534–541.CrossRefGoogle Scholar
  38. [38]
    D.C. Hemmy, P.L. Tessier (1985). CT of Dry Skulls with Craniofacial Deformities: Accuracy of Three-Dimensional Reconstruction. Radiology, 157(1):113–116.Google Scholar
  39. [39]
    G.T. Herman, H.K. Liu (1977). Display of Three-Dimensional Information in Computed Tomography. J. Comput. Assist. Tomogr., 1(1):155–160.CrossRefGoogle Scholar
  40. [40]
    G.T. Herman, H.K. Liu (1979). Three-dimensional display of human organs from computed tomograms. Computer Graphics and Image Processing, 9:1–21.CrossRefGoogle Scholar
  41. [41]
    G.T. Herman, J.K. Udupa (1981). Display of Three-Dimensional Discrete Surfaces. In Proc. SPIE 283, pp. 90–97.Google Scholar
  42. [42]
    G.T. Herman, J.K. Udupa (1983). Display of 3-D Digital Images: Computational Foundations and Medical Applications. IEEE Computer Graphics & Appi, 3(5):39–46.CrossRefGoogle Scholar
  43. [43]
    K.H. Höhne, R. Bernstein (1986). Shading 3D-Images from CT Using Gray Level Gradients. IEEE Trans. Med. Imaging, MI-5(l):45–47.CrossRefGoogle Scholar
  44. [44]
    K.H. Höhne, M. Bomans, B. Pflesser, A. Pommert, M. Riemer, T. Schiemann, U. Tiede (1992, in press). Perspectives of 3D Imaging. Diagn. Imaging, 1.Google Scholar
  45. [45]
    K.H. Höhne, M. Bomans, A. Pommert, M. Riemer, C. Schiers, U. Tiede, G. Wiebecke (1990). 3D-Visualization of Tomographie Volume Data Using the Generalized Voxel-Model. Visual Comput., 6(l):28–36.CrossRefGoogle Scholar
  46. [46]
    K.H. Höhne, M. Bomans, U. Tiede, M. Riemer (1988). Display of Multiple 3D-Objects Using the Generalized Voxel-Model. In R.H. Schneider, S.J. Dwyer, editors, Proc. SPIE 914, Medical Imaging II, Part B, Newport Beach, pp. 850–854.Google Scholar
  47. [47]
    K.H. Höhne, R.L. DeLaPaz, R. Bernstein, R.C. Taylor (1987). Combined Surface Display and Reformatting for the 3D-Analysis of Tomographie Data. luvest. RadioL, 22:658–664.CrossRefGoogle Scholar
  48. [48]
    K.H. Höhne, W.A. Hanson (1992, in press). Interactive SD-Segmentation of MRI and CT Volumes Using Morphological Operations. J. Comput. Assist. Tomogr. Google Scholar
  49. [49]
    K.H. Höhne, M. Riemer, U. Tiede. (1987). Viewing Operations for SD-Tomographie Gray Level Data. In H.U. Lemke, et al., editors, Computer Assisted Radiology, Proc. CAR ’87, pp. 599–609. Springer-Verlag, Berlin.Google Scholar
  50. [50]
    K.H. Höhne, M. Riemer, U. Tiede, W. Lierse (submitted). A SD Anatomical Atlas Based on a Volume Model. IEEE Computer Graphics & Appl. Google Scholar
  51. [51]
    F. Hottier, A. Collet Billon (1990). SD Echography: Status and Perspective. In K.H. Höhne, et al., editors, SD-Imaging in Medicine: Algorithms, Systems, Applications, pp. 21–41. Springer-Verlag, Berlin.Google Scholar
  52. [52]
    X. Hu, K.K. Tan, D.N. Levin, CA. Pelizzari, G.T.Y. Chen (1990). A Volume-Rendering Technique for Integrated Three-Dimensional Display of MR and PET Data. In K.H. Höhne, et al., editors, SD-Imaging in Medicine: Algorithms, Systems, Applications, pp. 379–397. Springer-Verlag, Berlin.Google Scholar
  53. [53]
    A.C. Kak, M. Slaney (1988). Principles of Computerized Tomographie Imaging. IEEE Press Inc., New York.Google Scholar
  54. [54]
    A. Kaufman, editor (1991). Volume Visualization. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  55. [55]
    A. Kaufman, R. Bakalash (1988). Memory and Processing Architecture for SD Voxel-Based Imagery. IEEE Computer Graphics & Appl, 8(ll):10–23.CrossRefGoogle Scholar
  56. [56]
    A. Kaufman, R. Bakalash, D. Cohen, R. Yagel (1991). Architectures for Volume Rendering. In A. Kaufman, editor, Volume Visualization, pp. 311–320. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  57. [57]
    A. Kaufman, D. Cohen, R. Yagel (1991). Volumetrie Shading Techniques. In A. Kaufman, editor, Volume Visualization, pp. 169–173. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  58. [58]
    A. Kaufman, R. Yagel, D. Cohen (1990). Intermixing Surface and Volume Rendering. In K.H. Höhne, et al., editors, SD-Imaging in Medicine: Algorithms, Systems, Applications, pp. 217–227. Springer-Verlag, Berlin.Google Scholar
  59. [59]
    E. Keppel (1975). Approximating Complex Surfaces by Triangulation of Contour Lines. IBM J. Res. Develop., 19(1):2–11.MathSciNetMATHCrossRefGoogle Scholar
  60. [60]
    T. Kohonen (1988). Seif-Organisation and Associative Memory, second edition. Springer-Verlag, Berlin.Google Scholar
  61. [61]
    O. Kübier, J. Ylä-Jääski, E. Hiltebrand (1987). 3-D Segmentation and Real Time Display of Medical Volume Images. In H.U. Lemke, et al., editors, Computer Assisted Radiology, Proc. CAR ’87, pp. 637–641. Springer-Verlag, Berlin.Google Scholar
  62. [62]
    D. Laur, P. Hanrah an (1991). Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Rendering. Comput. Graphics, 25(4):285–288.CrossRefGoogle Scholar
  63. [63]
    J.K.T. Lee, S.S. Sagel, R.J. Stanley, editors (1989). Computed Body Tomography with MRI Correlation, second edition. Raven Press, New York.Google Scholar
  64. [64]
    R. Lenz, P.E. Danielsson, S. Cronström, B. Gudmundsson (1986). Presentation and Perception of S-D Images. In K.H. Höhne, editor, Pictorial Information Systems in Medicine, pp. 459–468. Springer-Verlag, Berlin.Google Scholar
  65. [65]
    M. Levoy (1988). Display of Surfaces from Volume Data. IEEE Computer Graphics & Appl, 8(3):29–37.CrossRefGoogle Scholar
  66. [66]
    M. Levoy (1989). Design for a Real-Time High-Quality Volume Rendering Workstation. In C. Upson, editor, Proc. Chapel Hill Workshop on Volume Visualization, pp. 85–92. Dept. of Computer Science, University of North Carolina, Chapel Hill, NC.CrossRefGoogle Scholar
  67. [67]
    M. Levoy (1990). A Hybrid Ray Tracer for Rendering Polygon and Volume Data. IEEE Computer Graphics & Appl, 10(?):33–40.CrossRefGoogle Scholar
  68. [68]
    M. Levoy (1990). Volume Rendering by Adaptive Refinement. Visual Comput., 6(l):2–7.CrossRefGoogle Scholar
  69. [69]
    W.E. Lorensen, H.E. Cline (1987). Marching Cubes: A High Resolution SD Surface Construction Algorithm. Comput. Graphics, 21(4): 163–169.CrossRefGoogle Scholar
  70. [70]
    M. Magnusson, R. Lenz, P.E. Danielsson (1988). Evaluation of Methods for Shaded Surface Display of CT- Volumes. In Proc. 9th International Conference on Pattern Recognition, ICPR ’88, pp. 1287–1294. IEEE Computer Society Press, Washington, DC.Google Scholar
  71. [71]
    I. Mano, Y. Suto, M. Suzuki, M. Iio (1990). Computerized Three-Dimensional Normal Atlas. Radiat. Med., 8(2):50–54.Google Scholar
  72. [72]
    D. Marchac, editor (1987). Craniofacial Surgery: Proc. ofthe First International Congress of the International Society of Cranio-Maxillo-Facial Surgery. Springer-Verlag, Berlin.Google Scholar
  73. [73]
    D. Marr, E. Hildreth (1980). Theory of Edge Detection. Proc. R. Soc. Lond., B 207:187–217.Google Scholar
  74. [74]
    D.J. Meagher (1982). Geometrie Modeling Using Octree Encoding. Computer Graphics and Image Processing, 19(2): 129–147.CrossRefGoogle Scholar
  75. [75]
    H.P. Meinzer, U. Engelmann, D. Scheppelmann, R. Schäfer (1990). Volume Visualization of SD Tomographies. In K.H. Höhne, et al., editors, SD-Imaging in Medicine: Algorithms, Systems, Applications, pp. 253–259. Springer-Verlag, Berlin.Google Scholar
  76. [76]
    W. Menhardt (1988). Image Analysis Using Iconic Fuzzy Sets. In European Conference on Artificial Intelligence, Proc. ECAF88, pp. 672–674. Pitman PubL, London.Google Scholar
  77. [77]
    M.B. Merickel, T. Jackson, C. Carman, J.R. Brookeman, C.R. Ayers (1990). A Multispectral Pattern Recognition System for the Noninvasive Evaluation of Atherosclerosis Utilizing MRI. In K.H. Höhne, et al., editors, SD-Imaging in Medicine: Algorithms, Systems, Applications, pp. 133–146. Springer-Verlag, Berlin.Google Scholar
  78. [78]
    D. Ney, E.K. Fishman, D. Magid, R.A. Drebin (1990). Volumetrie Rendering of Computed Tomography Data: Principles and Techniques. IEEE Computer Graphics & Appl, 10:24–32.CrossRefGoogle Scholar
  79. [79]
    H. Oswald, W. Kropatsch, F. Leberl (1982). A Perspective Projection Algo-rithm with Fast Evaluation of Visibility for Discrete Three-Dimensional Scenes. In Proc. ISMIII ’82, International Symposium on Medical Imaging and Image Interpretation, pp. 464–468. IEEE Computer Society Press, Silver Spring, MD.Google Scholar
  80. [80]
    J.A. Parker, R.V. Kenyon, D.E. Troxel (1983). A Comparison of Interpolating Methods for Image Resampling. IEEE Trans. Med. Imaging, MI-2(l):31–39.CrossRefGoogle Scholar
  81. [81]
    C.A. Pelizzari, G.T.Y. Chen, D.R. Speibring, R.R. Weichselbaum, C. Chen (1989). Accurate Three-Dimensional Registration of CT, PET, and/or MR Images of the Brain. J. Comput. Assist. Tomogr., 13(l):20–26.CrossRefGoogle Scholar
  82. [82]
    P. Perona, J. Malik (1987). Scale Space and Edge Detection using Anisotropie Diffusion. In Proc. IEEE Workshop on Computer Vision, Miami, pp. 16–22.Google Scholar
  83. [83]
    S.M. Pizer, T.J. Cullip, R.E. Fredericksen (1990). Toward Interactive Object Definition in SD Scalar Images. In K.H. Höhne, et al., editors, SD-Imaging in Medicine: Algorithms, Systems, Applications, pp. 83–105. Springer-Verlag, Berlin.Google Scholar
  84. [84]
    S.M. Pizer, H. Fuchs, M. Levoy, J. Roseman, R.E. Davis, J.B. Renner (1989). SD Display with Minimal Predefinition. In H.U. Lemke, et al., editors, Computer Assisted Radiology, Proc. CAR ’89, pp. 723–736. Springer-Verlag, Berlin.Google Scholar
  85. [85]
    A. Pommert, W.-J. Höltje, N. Holzknecht, U. Tiede, K.H. Höhne (1991). Accuraey of Images and Measurements in SD Bone Imaging. In H.U. Lemke, et al., editors, Computer Assisted Radiology, Proc. CAR ’91, pp. 209–215. Springer-Verlag, Berlin.Google Scholar
  86. [86]
    A. Pommert, U. Tiede, G. Wiebecke, K.H. Höhne (1989). Image Quality in Voxel-Based Surface Shading. In H.U. Lemke, et al., editors, Computer Assisted Radiology, Proc. CAR ’89, pp. 737–741. Springer-Verlag, Berlin.Google Scholar
  87. [87]
    A. Pommert, U. Tiede, G. Wiebecke, K.H. Höhne (1990). Surface Shading in Tomographie Volume Visualization: A Comparative Study. In Proc. First Conference on Visualization in Biomedical Computing, VBC ’90, pp. 19–26. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  88. [88]
    S.P. Raya, J.K. Udupa (1990). Low-Level Segmentation of S-D Magnetic Res-onance Brain ImagesA Rule-Based System. IEEE Trans. Med. Imaging, MI-9(3):327–337.CrossRefGoogle Scholar
  89. [89]
    S.P. Raya, J.K. Udupa (1990). Shape-Based Interpolation of Multidimensional Objects. IEEE Trans. Med. Imaging, MI-9(l):32–42.CrossRefGoogle Scholar
  90. [90]
    R.A. Robb, C. Barillot (1989). Interactive Display and Analysis of 3-D Medical Images. IEEE Trans. Med. Imaging, MI-8(3):217–226.CrossRefGoogle Scholar
  91. [91]
    A. Rosenfeld, A.C. Kak (1982). Digital Picture Processing, second edition. Aca-demic Press, New York.Google Scholar
  92. [92]
    P. Sabella (1988). A rendering algorithm for SD scalar fields. Computer Graphics, 22(4):51–58.CrossRefGoogle Scholar
  93. [93]
    C. Schiers, U. Tiede, K.-H. Höhne (1989). Interactive 3D-Registration of Image Volumes from Different Sources. In H.U. Lemke, et al., editors, Computer Assisted Radiology, Proc. CAR ’89, pp. 666–670. Springer-Verlag, Berlin.Google Scholar
  94. [94]
    W. Schlegel (1990). Computer Assisted Radiation Therapy Planning. In K.H. Höhne, et al., editors, 3D-Imaging in Medicine: Algorithms, Systems, Applications, pp. 399–410. Springer-Verlag, Berlin.Google Scholar
  95. [95]
    R. Schmidt, T. Schiemann, K.-H. Hübener K.H. Höhne (1991, in press). 3-D Treatment Planning for Fast Neutrons. In Proc. Advances in Radiation Treat-ment (ART ’91), München. Google Scholar
  96. [96]
    W.B. Schwartz, R.S. Patil, P. Szolovits (1987). Artificial Intelligence in Medicine: where do we stand? New Engl. J. Med., 316(11):685–688.CrossRefGoogle Scholar
  97. [97]
    J. Serra (1982). Image Analysis and Mathematical Morphology. Academic Press, New York.MATHGoogle Scholar
  98. [98]
    D.D. Stark, W.G. Bradley (1988). Magnetic Resonance Imaging. C. V. Mosby Co., St. Louis, MO.Google Scholar
  99. [99]
    A. Sunguroff, D. Greenberg (1978). Computer Generated Images for Medical Applications. Computer Graphics, 12(3): 196–202.CrossRefGoogle Scholar
  100. [100]
    S.L. Tanimoto (1987). The Elements of Artificial Intelligence. Computer Science Press, Rockville, MD.Google Scholar
  101. [101]
    A.W. Templeton, J.A. Johnson, W.H. Anderson (1985). Computer Graphics for Digitally Formatted Images. Radiology, 152:527–528.Google Scholar
  102. [102]
    P. Tessier, D. Hemmy (1986). Three Dimensional Imaging in Medicine: A Cri-tique by Surgeons. Scand. J. Plast. Reconstr. Surg., 20:3–11.CrossRefGoogle Scholar
  103. [103]
    U. Tiede, K.H. Höhne, M. Bomans, A. Pommert, M. Riemer, G. Wiebecke (1990). Investigation of Medical 3D-Rendering Algorithms. IEEE Computer Graphics & AppL, 10(2):41–53.CrossRefGoogle Scholar
  104. [104]
    U. Tiede, M. Riemer, M. Bomans, K.H. Höhne (1988). Display Techniques for 3D-Tomographie Volume Data. In Proc. NCGA ’88, Vol. III, Anaheim,, pp. 188–197.Google Scholar
  105. [105]
    A.W. Toga (1990). Three-Dimensional Neuroimaging. Raven Press, New York.Google Scholar
  106. [106]
    H.K. Tuy, L.T. Tuy (1984). Direct 2-D Display of 3-D Objects. IEEE Computer Graphics & Appl., 4(10):29–33.Google Scholar
  107. [107]
    J.K. Udupa, G.T. Herman, L.S. Chen, P.S. Margasahayam, C.R. Meyer (1986). 3D98: A Turnkey System for 3D Display and Analysis of Medical Objects in CT Data. In Proc. SPIE 671, pp. 154–168.Google Scholar
  108. [108]
    J.K. Udupa, H.-M. Hung (1990). Surface versus Volume Rendering: A Comparative Assessment. In Proc. First Conference on Visualization in Biomedical Computing, VBC ’90, pp. 83–91. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  109. [109]
    C. Upson, M. Keeler (1988). V-BUFFER: Visible Volume Rendering. Computer Graphics, 22(4):59–64.CrossRefGoogle Scholar
  110. [110]
    M.W. Vannier (1987). Despite its Limitations, 3-D Imaging Here To Stay. Diagn. Imaging, 9(11):206–210.Google Scholar
  111. [111]
    M.W. Vannier, J.L. Marsh, J.O. Warren (1983). Three Dimensional Computer Graphics for Craniofacial Surgical Planning and Evaluation. Computer Graphics, 17(3):263–273.CrossRefGoogle Scholar
  112. [112]
    M.W. Vannier, T.K. Pilgram, C.F. Hildebolt, J.L. Marsh (1989). Diagnostic Evaluation of Three-Dimensional CT Reconstruction Methods. In H.U. Lemke et al., editor, Computer Assisted Radiology. Proc. CAR ’89, pp. 87–91. Springer-Verlag, Berlin.Google Scholar
  113. [113]
    M.W. Vannier, CM. Speidel, D.L. Rickman, L.D. Schertz, L.R. Baker, C.F. Hildeboldt, C.J. Offutt, J.A. Balko, R.L. Butterfield, M.H. Gado (1988). Multispectral Analysis of Magnetic Resonance Images. In Proc. 9th International Conference on Pattern Recognition, ICPR ’88, pp. 1182–1186. IEEE Computer Society Press, Washington, DC.Google Scholar
  114. [114]
    E. Vaske (1991). Segmentation of MRI Volume Data with the Topological Map for 3D Visualization. In IMDM Technical Report 91/1, Institute of Mathematics and Computer Science in Medicine, University of Hamburg. Google Scholar
  115. [115]
    A. Watt (1989). Three-Dimensional Computer Graphics. Addison Wesley Publ. Comp., Wokingham.MATHGoogle Scholar
  116. [116]
    P.N.T. Wells (1977). Biomedical Ultrasonics. Academic Press, New York.Google Scholar
  117. [117]
    L. Westover (1990). Footprint Evaluation for Volume Rendering. Computer Graphics, 24(4):367–376.CrossRefGoogle Scholar
  118. [118]
    J. Wilhelms, A. van Gelder (1990). Topological Considerations in Isosurface Generation. Computer Graphics, 24(5):79–86.CrossRefGoogle Scholar
  119. [119]
    T. Yasuda, Y. Hashimoto, S. Yokoi, J.-I. Toriwai (1990). Computer System for Craniofacial Surgical Planning Based on CT Images. IEEE Trans. Med. Imaging, MI-9(3):270–280.CrossRefGoogle Scholar
  120. [120]
    F.W. Zonneveld, S. Lobregt, J.C.H. van der Meulen, J.M. Vaandrager (1989). Three-Dimensional Imaging in Craniofacial Surgery. World J. Surg., 13:328–342.CrossRefGoogle Scholar
  121. [121]
    S.W. Zucker, R.A. Hummel (1981). A Three-Dimensional Edge Detector. IEEE Trans. Pattern Anal Machine Intell, PAMI-3(3):324–331.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Andreas Pommert
  • Michael Bomans
  • Martin Riemer
  • Ulf Tiede
  • Karl Heinz Höhne

There are no affiliations available

Personalised recommendations