Auditory Representation of Scientific Data

  • Stuart Smith
Part of the Computer Graphics: Systems and Applications book series (COMPUTER GRAPH.)

Abstract

The representation of data in sound is emerging as a complement to data visualization. Several pilot studies over the past decade have proved the concept of auditory data representation; however, there has been little formal research to measure the effectiveness of auditory data representation techniques or to increase our understanding of how they work. Until quite recently, appropriate computing environments for research in this area simply did not exist. This situation is now improving and an increasing number of investigators are seeking solutions to the formidable problems posed by auditory data representation. This paper surveys the present state of the field and outlines the central problems which must be solved if the auditory data representation is to become a truly useful tool for data analysis and exploration.

Keywords

Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. A. Bly (1982). Presenting Information in Sound. In Proceedings of the CHI’82 Conference on Human Factors in Computer Systems, pp. 371–375.Google Scholar
  2. [2]
    W. Buxton (1989). The Use of Non-Speech Audio at the Interface. In Tutorial #10, CHI’89, pp. 2.1–2.15.Google Scholar
  3. [3]
    J. Chowning (1973). The Synthesis of Complex Audio Spectra by Means of Frequency Modulation. Journal of the Audio Engineering Society, 21(7):526–534.Google Scholar
  4. [4]
    J. Chowning, D. Bristow (1986). FM Theory and Applications. Yamaha Music Foundation, Tokyo.Google Scholar
  5. [5]
    J. M. Doughty, W. M. Garner (1948). Pitch Characteristics of Short Tones II: Pitch as a Function of Duration. Journal of Experimental Psychology, 38:478–494.CrossRefGoogle Scholar
  6. [6]
    H. Fletcher, W. A. Munson (1933). Loudness, its Definition, Measurement and Calculation. Journal of the Acoustical Society of America, 5:82–108.CrossRefGoogle Scholar
  7. [7]
    S. P. Frysinger (1990). Applied Research in Auditory Data Representation. In Proceedings of the SPIE/SPSE Conference on Electronic Imaging, 1259, pp. 130–139.Google Scholar
  8. [8]
    D. M. Green, T. G. Birdsall, W. P. Tanner (1957). Signal Detection as a Function of Intensity and Duration. Journal of the Acoustical Society of America, 29:523–531.CrossRefGoogle Scholar
  9. [9]
    J. M. Grey (1975). An Exploration of Musical Timbre. CCRMA/Stanford Department of Music, Stanford, CA.Google Scholar
  10. [10]
    J. M. Grey (1977). Multidimensional Perceptual Scaling of Musical Timbres. Journal of the Acoustical Society of America, 61:1270–1277.CrossRefGoogle Scholar
  11. [11]
    G. Grinstein, R. M. Pickett, M. G. Williams (1989). EXVIS: An Exploratory Visualization Environment. In Graphics Interface’89, London, Ontario. Google Scholar
  12. [12]
    G. Grinstein, S. Smith (1990). The Perceptualization of Scientific Data. In Proceedings of the SPIE/SPSE Conference on Electronic Imaging, 1259, pp. 190–199.Google Scholar
  13. [13]
    W. Kaegi, S. Tempelaars (1978). VOSIM—A New Sound Synthesis System. Journal of the Audio Engineering Society, 26(6):418–425.Google Scholar
  14. [14]
    E. Lindemann, M. de Cecco (1991). Animal: Graphical Data Definition and Manipulation in Real Time. Computer Music Journal, 15(3):78–100.CrossRefGoogle Scholar
  15. [15]
    E. Lindemann, F. Dechelle, B. Smith, M. Starkier (1991). The Architecture of the IRCAM Musical Workstation. Computer Music Journal, 15(3):41–49.CrossRefGoogle Scholar
  16. [16]
    D. Lunney, R. C. Morrison (1981). High Technology Laboratory Aids for Visually Handicapped Chemistry Students. Journal of Chemical Education, 58(3):228–231.CrossRefGoogle Scholar
  17. [17]
    D. Lunney, R. C. Morrison (1990). Auditory Presentation of Experimental Data. In Proceedings of the SPIE/SPSE Conference on Electronic Imaging, 1259, pp. 140–146.Google Scholar
  18. [18]
    D. L. Mansur, M. M. Blattner, K. I. Joy (1985). Sound Graphs: A Numerical Data Analysis Method for the Blind. Journal of Medical Systems, 9(3):163–174.CrossRefGoogle Scholar
  19. [19]
    M. V. Mathews, J. R. Pierce, editors (1989). Current Directions in Computer Music Research. Cambridge, MA: MIT Press.Google Scholar
  20. [20]
    J. J. Mezrich, S. Frysinger, R. Slivjanovski (1984). Dynamic Representation of Multivariate Time Series Data. Journal of the American Statistical Association, 79(385):34–40.CrossRefGoogle Scholar
  21. [21]
    R. M. Pickett, G. G. Grinstein (1988). Iconographic Displays for Visualizing Multidimensional Data. In Proceedings of the 1988 IEEE Conference on Systems, Man and Cybernetics, Beijing and Shenyang, People’s Republic of China. Google Scholar
  22. [22]
    R. Plomp (1970). Timbre as a Multidimensional Attribute of Complex Tones. In Frequency Analysis and Periodicity Detection in Hearing. Sijthoff, Leiden, Netherlands.Google Scholar
  23. [23]
    R. Plomp, M. A. Bouman (1959). Relation Between Hearing Threshold And Duration of Pulses. Journal of the Acoustical Society of America, 31:749–758.CrossRefGoogle Scholar
  24. [24]
    M. Puckette (1991). Combining Event and Signal Processing in the MAX Graphical Programming Environment. Computer Music Journal, 15(3):68–77.CrossRefGoogle Scholar
  25. [25]
    M. Puckette (1991). FTS: a Real-Time Monitor for Multiprocessor Music Synthesis. Computer Music Journal, 15(3):58–67.CrossRefGoogle Scholar
  26. [26]
    W. Reichardt, H. Niese (1970). Choice of Sound Duration and Silent Interval for Test and Comparison Signals in the Subjective Measurement of Loudness. Journal of the Acoustical Society of America, 47:1083–1090.CrossRefGoogle Scholar
  27. [27]
    C. Roads, J. Strawn, editors (1985). Foundations of Computer Music. Cambridge, MA: MIT Press.Google Scholar
  28. [28]
    C. Scaletti (1989). The Kyma/Platypus Computer Music Workstation. Computer Music Journal, 13(2).Google Scholar
  29. [29]
    C. Scaletti (1991). Using Sound to Extract Meaning From Complex Data. In Proceedings of the SPIE/SPSE Conference on Electronic Imaging, 1459, pp. 207–219.Google Scholar
  30. [30]
    B. Scharf, S. Buus (1986). Audition I: Stimulus, Physiology, Thresholds. In K. R. Boff, L. Kaufman, J. P. Thomas, editors, Handbook of perception and human Performance 1, pp. 14.1–14.71. New York: Wiley.Google Scholar
  31. [31]
    B. Scharf, A. J. M. Houtsma (1986). Audition II: Loudness, Pitch, Localization, Distortion, Pathology. In K. R. Boff, L. Kaufman, J. P. Thomas, editors, Handbook of perception and human Performance 1, pp. 15.1–15.60. New York: Wiley.Google Scholar
  32. [32]
    S. Smith, R. D. Bergeron, G. Grinstein (1990). Stereophonie and surface sound generation for exploratory data analysis. In Proceedings of CHI’90, Seattle, WA. Google Scholar
  33. [33]
    S. Smith, G. Grinstein, R. D. Bergeron (to appear). Interactive Data Exploration with a Supercomputer. In Proceedings of Visualization’91, San Diego, CA, 1991. Google Scholar
  34. [34]
    S. Smith, G. Grinstein, R. M. Pickett (1991). Global Geometrie, Sound, and Color Controls for the Visualization of Scientific Data. In Proceedings of the SPIE/SPSE Conference on Electronic Imaging, 1459, pp. 192–206.Google Scholar
  35. [35]
    S. D. Speeth (1961). Seismometer Sounds. Journal of the Acoustical Society of America, 33:909–916.CrossRefGoogle Scholar
  36. [36]
    S. S. Stevens (1935). The Relation of Pitch to intensity. Journal of the Acoustical Society of America, 6:150–154.CrossRefGoogle Scholar
  37. [37]
    E. Terhardt (1974). Pitch of Pure of Tones: Its Relation To Intensity. In E. Zwicker, E. Terhardt, editors, Facts and Models in Hearing. Springer-Verlag, New York.Google Scholar
  38. [38]
    J. Verschuure, A. A. van Meeteren (1975). The Effect of Intensity on Pitch. Acustica, 32:33–44.Google Scholar
  39. [39]
    E. Viara (1991). CPOS: A Real-Time Operating System for the IRCAM Musical Workstation. Computer Music Journal, 15(3):50–57.CrossRefGoogle Scholar
  40. [40]
    G. von Bismarck (1974). Timbre of Steady-State Sounds: A Factorial Investigation of Its Verbal Attributes. Acustica, 30:146–159.Google Scholar
  41. [41]
    M. G. Williams, S. Smith, G. Pecelli (1989). Experimentally driven visual language design: texture perception experiments for iconographic displays. In Proceedings of the IEEE 1989 Visual Languages Workshop, Rome, Italy, pp. 62–67.Google Scholar
  42. [42]
    M. G. Williams, S. Smith, G. Pecelli (1990). Computer-Human Interface Issues in the Design of an Intelligent Workstation for Scientific Visualization.ACM SIGCHI Bulletin, 21(4):44–49.CrossRefGoogle Scholar
  43. [43]
    E. S. Yeung (1980). Pattern Recognition by Audio Representation of Multivariate Analytical Data. Analytical Chemistry, 52(7): 1120–1123.CrossRefGoogle Scholar
  44. [44]
    J. J. Zwislocki (1969). Temporal Summation of Loudness. Journal ofthe Acoustical Society of America, 46:413–441.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Stuart Smith

There are no affiliations available

Personalised recommendations