Simple-Decoupling Treatment of High-Tc Superconductors

  • S. Misawa
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 60)

Abstract

The t-J model is examined within the framework of the Hubbard-I-type decoupling method of the Green’s functions and by using the Fukuyama’s expression for Hall coefficient R H. The superconducting transition temperature T c and the normal-state R H at finite temperature are calculated as functions of doping-fraction δ. The obtained results are symmetrical with respect to hole- and electron-doping. In the small hole-doping case, the extended s-wave state is favorable, and the behaviors of T c and R H as functions of δ are qualitatively in agreement with the experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Misawa: J. Phys. Soc. Jpn. 58, 3298 (1989).CrossRefADSGoogle Scholar
  2. 2.
    S. Misawa: J. Phys. Soc. Jpn. 59, 4113 (1990).CrossRefADSGoogle Scholar
  3. 3.
    H. Fukuyama and Y. Hasegawa: Physica B148, 204 (1987).Google Scholar
  4. 4.
    F. C. Zhang and T. M. Rice: Phys. Rev. B37 3759 (1988).ADSGoogle Scholar
  5. 5.
    H. Matsukawa and H. Fukuyama: J. Phys. Soc. Jpn. 58, 2845 (1989).CrossRefADSGoogle Scholar
  6. 6.
    H. Fukuyama: Prog. Theor. Phys. 42, 1284 (1969).CrossRefADSGoogle Scholar
  7. 7.
    N. P. Ong et al.: Phys. Rev. B35, 8807 (1987).Google Scholar
  8. 8.
    M. Suzuki: Phys. Rev. B39, 2312 (1989).ADSGoogle Scholar
  9. 9.
    J. B. Torrance et al.: Phys. Rev. Lett. 61, 1127 (1988).CrossRefADSGoogle Scholar
  10. 10.
    H. Takagi et al.: Phys. Rev. Lett. 62, 1197 (1989).CrossRefADSGoogle Scholar
  11. 11.
    Y. Iye: Proc. Annual Meeting of Phys. Soc. Jpn. [in Japanese] Osaka. Univ., March 1990. Vol. 3, p. 294.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1992

Authors and Affiliations

  • S. Misawa
    • 1
  1. 1.Faculty of Human ScienceTokiwa UniversityMito, Ibaraki 310Japan

Personalised recommendations