Advertisement

Surface-Induced Order Observed on a Cu3Au(001) Surface

  • K. S. Liang
  • H. H. Hung
  • S. L. Chang
  • Z. Fu
  • S. C. Moss
  • K. Oshima
Part of the Springer Proceedings in Physics book series (SPPHY, volume 61)

Abstract

The possibility of surface effects on the first-order transition was first proposed by Lipowsky [1]. At temperatures away from the bulk transition, the surface can exhibit disordering (if approached from below the transition) or ordering (if approached from above the transition) phenomena. So far most experimental studies on surface-induced transition have been centered on the surfaces of a classical binary alloy, Cu3 Au [2–4]. In the case of the Cu3 Au (001) surface, previous LEED and x-ray studies [2,3] suggested that a surface-induced disorder took place below the bulk transition. These results also indicated that the surface transition observed was consistent with a critical wetting. Recently, we studied the surface of a 2% Au-rich Cu3 Au sample (Tc ∼ 376 °C) and found a very strong surface segregation effect [5]. Such effect produces a segregated Cu3 Au layer at the surface with its order-disorder temperature ∼ 390 °C (i.e., close to the bulk TC). We therefore re-investigated a second crystal, of which the stoichiometry is Cu3 Au to our experimental accuracy. In contrast to previous studies [2,3], our results showed a surface-induced order on this sample.

Keywords

Bragg Peak Bulk Transition Surface Peak Diffuse Background Critical Wetting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Lipowsky, Phys. Rev. Lett. 49, 1575 (1982).ADSCrossRefGoogle Scholar
  2. J. Appl. Phys. 55, 2485 (1984).Google Scholar
  3. 2.
    S.F. Alvarado, M. Campagna, A. Fattah, and W. Uelhoff, Z. Phys. B 66, 103 (1987).ADSCrossRefGoogle Scholar
  4. 3.
    H. Dosch, L. Mailander, A. Lied, J. Peisl, F. Grey, R. L. Johnson, and S. Krummacher, Phys. Rev. Lett. 60, 2382 (1988).ADSCrossRefGoogle Scholar
  5. 4.
    X-M. Zhu, H. Zabel. I.K. Robinson, E. Vlieg, J.A. Dura, and C.P. Flynn, Phys. Rev. Lett. 65, 2692 (1990).ADSCrossRefGoogle Scholar
  6. 5.
    H.H. Hung, S.B. Rivers, K.S. Liang, W.N. Unertl, and K.L. D’Amico, to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • K. S. Liang
    • 1
  • H. H. Hung
    • 1
  • S. L. Chang
    • 1
  • Z. Fu
    • 1
  • S. C. Moss
    • 2
  • K. Oshima
    • 3
  1. 1.Exxon Research and Engineering Co.AnnandaleUSA
  2. 2.University of HoustonHoustonUSA
  3. 3.Tsukuba UniversityTsukuba, IbarakiJapan

Personalised recommendations