Skip to main content

Wirkungsmechanismen von Antikonvulsiva

  • Chapter
Epileptische Anfälle
  • 25 Accesses

Zusammenfassung

Epileptische Anfälle können grob in generalisierte und partielle Anfälle unterschieden werden. Primär generalisierte Anfälle beruhen auf einer starken Synchronisierung der neuronalen Aktivität, ohne daß die durchschnittliche Entladungstätigkeit der Zellen ansteigen muß (Kostopoulos et al. 1982). Diese starke Synchronisation macht eine normale Verarbeitung von Informationen unmöglich. Deshalb kommt es zu Bewußtseinstörungen. Aus der Aktivität kann sich u.U. ein großer Anfall entwickeln.

Die dem Artikel zugrundeliegende Forschung wurde von der Deutschen Forschungsgemeinschaft und der Sanderstiftung unterstützt. Wir danken G. Heske und M. Bullmann für die Hilfe bei den Experimenten und der Erstellung des Manuskripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alzheimer C, ten Bruggencate G (1988) Actions of BRL 34915 (Cromakalim) upon convulsive discharges in guinea pig hippocampal slices. Naunyn-Schmiedeberg’s Arch Pharmacol 337:429–434

    Article  CAS  Google Scholar 

  • Andreasen M, Lambert JDC, Jensen MS (1988) Effects of new non-NMDA antagonists in the rat in vitro hippocampus. J Physiol (Lond) (in press)

    Google Scholar 

  • Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, Spencer WA (1973) Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggest neurophysiological explanation of brief paroxysms. Brain Res 52:1–17

    Article  PubMed  CAS  Google Scholar 

  • Bingmann D, Speckmann E-J (1989) Specific suppression of pentylenetetrazol-induced epileptiform discharges in CA3 neurons (hippocampal slice, guinea pig) by the organic calcium antagonists flunarizine and verapamil. Exp Brain Res 74:239–248

    Article  PubMed  CAS  Google Scholar 

  • Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502

    Article  PubMed  CAS  Google Scholar 

  • Chapman AG, Meldrum BS, Nanji N, Watkins JC (1987) Anticonvulsant action and biochemical effects in DBA/2 mice of CPP (3((±)-2-carboxypiperazin-4-yl)-propyl-1- phosphonate), a novel N-methyl-D-aspartate antagonist. Eur J Pharmacol 139:91–96

    Article  PubMed  CAS  Google Scholar 

  • Coulter DA, Huguenard JR, Prince DA (1989) Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons. Neurosci Lett 98:74–78

    Article  PubMed  CAS  Google Scholar 

  • Coulter DA, Huguenard JR, Prince DA (1990 a) Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: GABA current blockade. Br J Pharmacol 100:807–813

    PubMed  CAS  Google Scholar 

  • Coulter DA, Huguenard JR, Prince DA (1990 b) Differential effects of petit mal antivoncul-sants and vonvulsants on thalamic neurones: calcium current reduction. Br J Pharmacol 100:800–806

    PubMed  CAS  Google Scholar 

  • De Deyn PP, Macdonald RL (1988) Effects of non-sedative anxiolytic drugs on responses to GABA and on diazepam-induced enhancement of these responses on mouse neurones in cell culture. Br J Pharmacol 95:109–120

    PubMed  Google Scholar 

  • Dreier JP, Heinemann U (1990) Late low magnesium-induced epileptiform activity in rat entorhinal cortex slices becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 119:68–70

    Article  PubMed  CAS  Google Scholar 

  • Franceschetti S, Bugiani O, Panzica F, Tagliavini F, Avanzini G (1990) Changes in excitability of CA1 pyramidal neurons in slices prepared from AlCl3-treated rabbits. Epilepsy Res 6:39–48

    Article  PubMed  CAS  Google Scholar 

  • Franceschetti S, Hamon B, Heinemann U (1986) The action of valproate on spontaneous epileptiform activity in absence of synaptic transmission and on evoked changes in [Ca2+]0 in the hippocampal slice. Brain Res 386:1–11

    Article  PubMed  CAS  Google Scholar 

  • Gasser T, Reddington M, Schubert P (1988) Effect of carbamazepine on stimulus-evoked Ca2+ fluxes in rat hippocampal slices and its interaction with A1-adenosme receptors. Neurosci Lett 91:189–193

    Article  PubMed  CAS  Google Scholar 

  • Gutnick MJ, Connors BW, Prince DA (1982) Mechanisms of neocortical epileptogenesis in vitro. J Neurophysiol 48:1321–1325

    PubMed  CAS  Google Scholar 

  • Heinemann U (1987) Basic mechanisms of the epilepsies. In: Halliday AM, Butler SR, Paul R (eds) A textbook of clinical neurophysiology. Wiley & Sons, Chichester New York Brisbane, pp 497–534

    Google Scholar 

  • Heinemann U, Hamon B (1986) Calcium and epileptogenesis. Exp Brain Res 65:1–10

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Jones RSG (1989) Neurophysiology of epilepsy. In: Gram L, Dam M (eds) Perspectives of epilepsy. Raven, New York (in press)

    Google Scholar 

  • Jahnsen H, Llinás RR (1984) Ionic basic for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349:227–247

    CAS  Google Scholar 

  • Jensen MS, Lambert JDC (1986) Electrophysiological studies in cultured mouse CNS neurons of the action of an agonist and an inverse agonist at the benzodiazepine receptor. Br J Pharmacol 88:717–731

    PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos G, Avoli M, Pellegrini A, Gloor P (1982) Laminar analysis of spindles and of spikes of the spike and wave discharge of feline generalized Penicillin epilepsy. Electroencephalogr Clin Neurophysiol 53:1–13

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Chapman AG, Meldrum BS, Hutchison A, Tsai C, Wood PL (1988) CGS 19755 (CGS 19755) is a potent and competitive antagonist at NMDA-type receptors. Eur J Pharmacol 154:89–93

    Article  PubMed  CAS  Google Scholar 

  • Llinás RR, Sugimori M, Lin J-W, Cherksey B (1989) Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci USA 86:1689–1693

    Article  PubMed  Google Scholar 

  • Lux HD (1971) Ammonium and chloride extrusion: Hyperpolarizing synaptic inhibition in spinal motoneurons. Science 173:555–557

    Article  PubMed  CAS  Google Scholar 

  • Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol 44. Basic mechanisms of the epilepsies: molecular and cellular approaches. Raven, New York, pp 619–639

    Google Scholar 

  • Macdonald RL, McLean MJ (1986) Antivonvulsant drugs: mechanisms of action. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology-basic mechanisms of the epilepsies. Raven, New York, pp 713–736

    Google Scholar 

  • Matsumoto H, Ajmone-Marsan C (1964) Cortical cellular phenomena in experimental epilepsy: Interictal manifestations. Exp Neurol 9:286–304

    Article  PubMed  CAS  Google Scholar 

  • Misgeld U, Klee MR, Zeise ML (1984) Differences in baclofen-sensitivity between CA3 neurons and granule cells of the guinea pig hippocampus in vitro. Neurosci Lett 47:307–311

    Article  PubMed  CAS  Google Scholar 

  • Misgeld U, Müller W, Brunner H (1989) Effects of (—) baclofen on inhibitory neurons in the guinea pig hippocampal slice. Pfluegers Arch 414:139–144

    Article  CAS  Google Scholar 

  • Mody I, Lambert JDC, Heinemann U (1987) Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J Neurophysiol 57:869–888

    PubMed  CAS  Google Scholar 

  • Mody I, Salter MW, MacDonald JF (1988) Requirement of NMDA receptor/channels for intracellular high energy phosphates and the extent of intraneuronal calcium buffering in cultured mouse hippocampal neurons. Neurosci Lett 93:73–78

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6:799–810

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Friedrich T, Kim M-S, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T, Mikoshiba K, Imoto K, Tanabe T, Numa S (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402

    Article  PubMed  CAS  Google Scholar 

  • Prince DA (1978) Neurophysiology of epilepsy. Ann Rev Neurosci 1:395–415

    Article  PubMed  CAS  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

    Article  PubMed  CAS  Google Scholar 

  • Rausche G, Sarvey JM, Heinemann U (1989) Slow synaptic inhibition in relation to frequency habituation in dentate granule cells of rat hippocampal slices. Exp Brain Res 78:233–242

    Article  PubMed  CAS  Google Scholar 

  • Shivers BD, Killisch I, Sprengel R, Sontheimer H, Köhler M, Schofield PR, Seeburg PH (1989) Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3:327–337

    Article  PubMed  CAS  Google Scholar 

  • Thalmann RH, Ayala GF (1982) A late increase in potassium conductance follows synaptic stimulation of granule of the dentate gyrus. Neurosci Lett 29:243–284

    Article  PubMed  CAS  Google Scholar 

  • Twyman RE, Rogers CJ, Macdonald RL (1989 a) Pentobarbital and picrotoxin have reciprocal actions on single GABAA receptor channels. Neurosci Lett 96:89–95

    Article  PubMed  CAS  Google Scholar 

  • Twyman RE, Rogers CJ, Macdonald RL (1989 b) Differential regulation of gamma-amino-butyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 25:213–220

    Article  PubMed  CAS  Google Scholar 

  • Verdoorn TA, Draguhn A, Ymer S, Seeburg PH, Sakmann B (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4:919–928

    Article  PubMed  CAS  Google Scholar 

  • Walther H, Lambert JDC, Jones RSG, Heinemann U, Hamon B (1986) Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci Lett 69:156–161

    Article  PubMed  CAS  Google Scholar 

  • Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Ann Rev Pharmacol Toxicol 21:165–204

    Article  CAS  Google Scholar 

  • Wong RKS, Traub RD, Miles R (1986) Cellular basis of neuronal synchrony in epilepsy. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol 44. Raven, New York, pp 583–592

    Google Scholar 

  • Yaari Y, Hamon B, Lux HD (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235:680–682

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinemann, U., Stabel, J., Ficker, E., Zhang, C.L. (1992). Wirkungsmechanismen von Antikonvulsiva. In: Walden, J., Witte, O.W., Speckmann, EJ. (eds) Epileptische Anfälle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77136-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77136-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54872-0

  • Online ISBN: 978-3-642-77136-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics