Ischemic Neuronal Injury Modified by Basic Fibroblast Growth Factor

  • K. Yamada
  • E. Kohmura
  • A. Kinoshita
  • J. Taguchi
  • T. Sakaguchi
  • K. Tsuruzono
  • T. Hayakawa
Conference paper


Basic fibroblast growth factor (bFGF) is one of the growth factors for neurons, i. e., neurotrophic factors. We hereby report that bFGF is effective for recovery of neurons from ischemic injury in vitro and in vivo. Cortical, thalamic, and hippocampal neurons were cultured from 18-day-old rat embryo, and bFGF was added to the serumfree culture medium. bFGF supported the survival of hippocampal neurons in vitro in a dose-dependent manner. Cortical and thalamic neurons were also supported in their survival by bFGF, though the effect was less significant than in hippocampal neurons. bFGF was effective in vivo for the prevention of retrograde degeneration of thalamic neurons caused by cortical infarction. bFGF (lng/0. lml) was injected intracisternally once a week for four times starting 1 day after occlusion. The thalamic degeneration was significantly reduced by bFGF when compared with the vehicle-injected group. bFGF induced a glial reaction in the brain tissue close to the ventriculocisternal systems. bFGF therefore prevented retrograde degeneration of the thalamic neurons by a direct neurotrophic effect or indirect effect through astrocytes.


cerebral ischemia basic fibroblast growth factor in vitro hypoxia retrograde degeneration neurotrophic factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson KJ, Dam D, Lee S, Cotman CW (1988) Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 332: 360–361PubMedCrossRefGoogle Scholar
  2. 2.
    Arita N, Ushio Y, Hayakawa T, Nagatani M, Huang T-Y, Izumoto S, Mogami H (1988) Intrathecal ACNU: a new therapeutic approach against malignant leptomeningeal tumors. J Neurooncol 6: 221–226PubMedCrossRefGoogle Scholar
  3. 3.
    Barron KD, Means ED, Larsen E (1973) Ultrastructure of retrograde degeneration in thalamus of rat. 1. Neuronal somata ancj dendrites. J Neuropathol Exp Neurol 32: 218–244Google Scholar
  4. 4.
    Cooper RM, Thurlow GA, Rooney BJ (1984) 2-Deoxyglucose uptake and histologic changes in rat thalamus after neocortical ablations. Exp Neurol 83: 134–143Google Scholar
  5. 5.
    Finklestein SP, Apostolides PJ, Caday CG, Prosser J, Philips MF, Klagsbrun M (1988) Increased basic fibroblast growth factor (bFGF) immunoreactivity at the site of focal brain wounds. Brain Res 460: 253–259PubMedCrossRefGoogle Scholar
  6. 6.
    Fujie W, Kirino T, Tamura A, Oka H, Sano K (1989) Degeneration and shrinkage of the thalamus after focal ischemia. Igakuno Ayumi 148: 621–622Google Scholar
  7. 7.
    Furukawa S, Furukawa Y, Satoyoshi E, Hayashi K (1987) Regulation of nerve growth factor synthesis/secretion by catecholamine in cultured mouse astroglical cells. Biochem Biophys Res Commun 147: 1048–1054PubMedCrossRefGoogle Scholar
  8. 8.
    Gage FH, Olejniczak P, Armstrong DM (1988) Astrocytes are important for sprouting in the septohippocampal circuit. Exp Neurol 102: 2–13PubMedCrossRefGoogle Scholar
  9. 9.
    Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transection. J Neurosci 6: 2155–2162PubMedGoogle Scholar
  10. 10.
    Iizuka H, Sakatani K, Young W (1990) Neural damage in the rat thalamus after cortical infarcts. Stroke 21: 790–794PubMedCrossRefGoogle Scholar
  11. 11.
    Iwane M, Kurokawa T, Sasada R, Seno M, Nakagawa S, Igarashi K (1987) Expression of cDNA encoding human basic fibroblast growth factor in E. coli. Biochem Biophys Res Commun 146: 470–477CrossRefGoogle Scholar
  12. 12.
    Jacobson S, Trojanowski JQ (1975) Corticothalamic neurons and thalamocortical terminal fields: an investigation in rat using horseradish peroxidase and autoradiography. Brain Res 85: 385–401PubMedCrossRefGoogle Scholar
  13. 13.
    Kataoka K, Hayakawa T, Yamada K, Mushiroi T, Kuroda R, Mogami H (1989) Neuronal network disturbance after focal ischemia in rats. Stroke 20: 1226–1235PubMedCrossRefGoogle Scholar
  14. 14.
    Kinoshita A, Yamada K, Hayakawa T, Kataoka K, Mushiroi T, Kohmura E, Mogami H (1990) Modification of anoxic neuronal injury by human recombinant epidermal growth factor and its possible mechanism. J Neurosci Res 25: 324–330PubMedCrossRefGoogle Scholar
  15. 15.
    Kinoshita A, Yamada K, Hayakawa T (1990) Hypoxic injury of rat cortical neurons in primary cell cultures. Introduction of a modified method to create the hypoxic state. Exp Cell Biol 57: 310–314Google Scholar
  16. 16.
    Kurokawa T, Sasada R, Iwane M, Igarashi K (1987) Cloning and expression of cDNA encoding human basic fibroblast growth factor. FEBS Lett 213: 189–194PubMedCrossRefGoogle Scholar
  17. 17.
    Matthews MA (1973) Death of the central neuron: an electron microscopic study of thalamic retrograde degeneration following cortical ablation. J Neurocytol 2: 265–288PubMedCrossRefGoogle Scholar
  18. 18.
    Morrison RS, Sharma A, de Vellis J, Bradshaw R (1986) Basic fibroblast growth factor supports survival of cerebral cortical neurons in primary cultures. Proc Natl Acad Sci USA 83: 7537–7541Google Scholar
  19. 19.
    Morrison RS, Kornblum HI, Leslie FM, Bradshaw R (1987) Trophic stimulation of cultured neurons from neonatal rat brain by epidermal growth factor. Science 238: 72–75PubMedCrossRefGoogle Scholar
  20. 20.
    Otto D, Frotscher M, Unsicker K (1989) Basic fibroblast growth factor and nerve growth factor administered in gel form rescue medial septal neurons after fimbria fornix transection. J Neurosci Res 22: 83–91PubMedCrossRefGoogle Scholar
  21. 21.
    Paxinos G and Watson C (1982) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  22. 22.
    Seno M, Sasada R, Iwane M, Sudo K, Kurokawa T, Ito K, Igarashi K (1988) Stabilizing basic fibroblast growth factor using protein engineering. Biochem Biophys Res Commun 151: 701–708, 1988Google Scholar
  23. 23.
    Taguchi J, Yamada K, Hayakawa T, Kataoka K, Kohmura E, Nakao K, Matsumoto K, Mogami H, Kanai N (1989) Ischemic axonal injury and its recovery after focal cerebral ischemia. No To Shinkei 41: 813–818Google Scholar
  24. 24.
    Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischemia in rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1: 53–60Google Scholar
  25. 25.
    Tamura A, Goto O, Sano K (1986) Focal cerebral infarction in the rat: 1. Operative technique and physiological monitorings for chronic model. No To Shinkei 38: 747–751Google Scholar
  26. 26.
    Ushio Y, Chernik NL, Posner JB (1987) Meningeal carcinomatosis Development of an experimental model. J Neuropathol Exp Neurol 36: 228–244Google Scholar
  27. 27.
    Walicke PA (1988) Basic and acidic fibroblast growth factor have trophic effects on neurons from multiple CNS regions. J Neurosci Res 8: 2618–2627Google Scholar
  28. 28.
    Williams LR, Varon S, Peterson GM, Wictorin K, Fischer W (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbrial transection. Proc Natl Acad Sci USA 83: 9231–9235PubMedCrossRefGoogle Scholar
  29. 29.
    Yamada K, Hayakawa T, Kinoshita A, Kataoke K, Mushiroi T (1989) Ischemiainduced neurotrophic activity detected in the periinfarcted brain tissue and its partial purification. J Cereb Blood Flow Metab 9 [Suppl 1]: S2CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • K. Yamada
  • E. Kohmura
  • A. Kinoshita
  • J. Taguchi
  • T. Sakaguchi
  • K. Tsuruzono
  • T. Hayakawa

There are no affiliations available

Personalised recommendations