Skip to main content

Importance of Postischemic Neurotransmission in Delayed Neuronal Death

  • Conference paper
Maturation Phenomenon in Cerebral Ischemia

Summary

Glutamatergic and noradrenergic neurotransmissions are important for the development of delayed neuronal death. Thus, neuronal damage in the rat hippocampus following transient cerebral ischemia and in the striatum following insulin-induced hypoglycemia is mitigated by pharmacological interventions in the postinsult period. Postischemic treatment with idazoxan, an a2-adrenoceptor antagonist and ligand at imidazole receptors, decreases delayed neuronal damage following transient cerebral ischemia. Blockade of one type of glutamate receptors, the N-methyl-D-aspartate (NMDA) receptor, diminishes neuronal necrosis when given after a period of hypoglycemia but not following transient severe cerebral ischemia. Following severe ischemia blockade of the glutamatergic ionotropic quisqualate (AMPA) receptor significantly diminishes neuronal damage. During and immediately following ischemia calcium ions and changes in membrane lipid composition and structure stimulate translocation of protein kinase C (PKC) from the cytosol to the cell membranes, while later in the reperfusion phase PKC is downregulated. This may lead to an enhanced AMPA receptor activation of voltage operated ion channels in the early reperfusion phase. Later, downregulation of PKC may lead to a decreased influence of trophic factors and loss of the inhibitory feedback mechanisms regulating glutamate receptor mediated inositol trisphosphate formation causing an abberant intracellular calcium ion homeostasis.

We propose that following moderate ischemia NMDA receptors mediate glutamate neurotoxicity in the postischemic phase, while following severe ischemia the AMPA receptors are more important. The noradrenaline system may be protective by antagonizing postischemic activation of AMPA receptors. We propose that glutamatergic neurotransmission becomes deleterious following ischemia due to transient activation and delayed degradation of protein kinases.

This work was supported by the Medical Faculty at Lund University, United States Public Health Services (grant no. NS 25302), the Swedish Medical Research Council (grant no. 8644), The Laerdal Foundation, and The Swedish Stroke Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers GW, Goldberg, Choi DW (1989) N-methyl-D-aspartate antagonists: ready for clinical trial in brain ischemia? Ann Neurol 25: 398–403

    Article  PubMed  CAS  Google Scholar 

  2. Araki S, Simada Y, Kaji K, Hayashi H (1990) Role of protein kinase C in the inhibition by fibroblast growth factor of apoptosis in serum-depleted endothelial cells. Biochem Biophys Res Commun 172: 1081–1085

    Article  PubMed  CAS  Google Scholar 

  3. Avaldano MI, Bazan NG (1975) Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia. J Neurochem 25: 919–920

    Article  Google Scholar 

  4. Berridge M (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159–193

    Article  PubMed  CAS  Google Scholar 

  5. Blomqvist P, Lindvall O, Wieloch T (1985) Lesions of the locus coeruleus system aggravate ischemic damage in the rat brain. Neurosci Lett 58: 353–358

    Article  PubMed  CAS  Google Scholar 

  6. Buszaki G, Freund TF, Bayardo F, Somogyi P (1989) Ischemia-induced changes in the electrical activity of the hippocampus. Exp Brain Res 78: 268–278

    Google Scholar 

  7. Cardell M, Bingren H, Wieloch T, Zivin J, Saitoh T (1990) Protein kinase C is translocated to cell membranes during cerebral ischemia. Neurosci Lett 119: 228–232

    Article  PubMed  CAS  Google Scholar 

  8. Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369–379

    PubMed  CAS  Google Scholar 

  9. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634

    Article  PubMed  CAS  Google Scholar 

  10. DeLeo J, Schubert P, Kreutzberg GW (1988) Protection against ischemic brain damage using propentofylline in gerbils. Stroke 19: 1535–1539

    Article  Google Scholar 

  11. Dumuis A, Pin JP, Oomagari K, Sebben M, Bockaert J (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347: 182–183

    Article  PubMed  CAS  Google Scholar 

  12. Favaron M, Manev H, Alho H, Bertolino M, Ferret B, Guidotti A, Costa E (1988) Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc Natl Acad Sci USA 85: 7351–7355

    Article  PubMed  CAS  Google Scholar 

  13. Fleischer JE, Tateishi A, Drummond JC, Scheller MS, Grafe MR, Zornow MH, Shearman GT, Shapiro HM (1989) MK-801, an excitatory amino acid, does not improve neurological outcome following cardiac arrest in cats. J Cereb Blood Flow Metab 9: 795–804

    Article  PubMed  CAS  Google Scholar 

  14. Giffard RG, Monyer H, Christine CW, Choi DW (1990) Acidosis reduces NMDA receptor activation, glutamate neurotoxicity and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 506: 339–342

    Article  PubMed  CAS  Google Scholar 

  15. Gill R, Foster AC, Woodruff GN (1987) Systemic administration of MK-801 protects against ischaemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 7: 3343–3349

    PubMed  CAS  Google Scholar 

  16. Globus MYT, Dietrich WD, Busto R, Valdes I, Ginsberg MD (1989) The combined treatment with a dopamine Dx antagonist (SCH-23390) and NMDA receptor blocker (MK-801) dramatically protects against ischemia-induced hippocampal damage. J Cereb Blood Flow Metab 9 [Suppl 1]: S5

    Google Scholar 

  17. Gustafson I, Miyauchi Y, Wieloch T (1989) Postischemic administration of Idazoxan, an a-2 adrenergic receptor antagonist, decreases neuronal damage in the rat brain. J Cereb Blood Flow Metab 9: 171–174

    Article  PubMed  CAS  Google Scholar 

  18. Gustafson I, Westerberg E, Wieloch T (1990) Protection by the a2-adrenoreceptor antagonist idazoxan against ischemia-induced neuronal damage: effects of duration and delay of postischemic treatment. J Cereb Blood Flow Metab 10: 885–894

    Article  PubMed  CAS  Google Scholar 

  19. Hama T, Huang K-P, Guroff G (1986) Protein kinase C as a component of nerve growth factor sensitive phosphorylation system in PC 12 cells. Proc Natl Acad Sci USA 83: 2353–2357

    Article  PubMed  CAS  Google Scholar 

  20. Hansen AJ (1985) Effects of anoxia on ionic distribution in the brain. Physiol Rev 65: 101–135

    PubMed  CAS  Google Scholar 

  21. Huang K-P (1989) The mechanism of protein kinase C activation. Trends Neurosci 12: 425–432

    Article  PubMed  CAS  Google Scholar 

  22. Ito U, Spatz M, Walker JT, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. Acta Neuropathol (Berl) 32: 209–223

    Article  CAS  Google Scholar 

  23. Jorgensen MB, Johansen FF, Diemer NH (1987) Removal of the enthorhinal cortex protects hippocampal CA-1 neurons from ischemic damage. Acta Neuropathol (Berl) 73: 189–194

    Article  CAS  Google Scholar 

  24. Kaczmarek L (1987) The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurosci 10: 30–34

    Article  CAS  Google Scholar 

  25. Kalimo H, Auer RN, Siesjo BK (1985) The temporal evolution of hypoglycemic brain damage. III. Light and electron microscopic findings in the rat caudoputamen. Acta Neuropathol (Berl) 67: 37–50

    Google Scholar 

  26. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57 - 69

    Article  PubMed  CAS  Google Scholar 

  27. Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol (Berl) 62: 209–218

    Article  CAS  Google Scholar 

  28. Kochhar A, Saitoh T, Zivin J (1989) Reduced protein kinase C activity in ischemic spinal cord. J Neurochem 53: 946–952

    Article  PubMed  CAS  Google Scholar 

  29. Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoon T, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249: 556–560

    Article  PubMed  CAS  Google Scholar 

  30. Lauritzen M, Hansen AJ, Kronborg D, Wieloch T (1990) Cortical spreading depression is associated with arachidonic acid accumulation and preservation of energy charge. J Cereb Blood Flow Metab 10: 115–120

    Article  PubMed  CAS  Google Scholar 

  31. Lindén T, Kalimo H, Wieloch T (1987) Protective effect of lesion to the glutamatergic cortico-striatal projections on the hypoglycemic nerve cell injury in rat striatum. Acta Neuropathol (Berl) 74: 335–344

    Article  Google Scholar 

  32. Louis J-C, Magal E, Yavin E (1988) Protein kinase C alterations in the fetal rat brain after global ischemia. J Biol Chem 263: 19282–19285

    PubMed  CAS  Google Scholar 

  33. Mayer ML, Miller RJ (1990) Excitatory amino acid receptors, second messengers and= regulation of intracellular Ca2+ in mammalian neurons. Trends Pharmacol Sci 11: 254–260

    Article  PubMed  CAS  Google Scholar 

  34. Monaghan DT, Holets VR, Toy DW, Cotman C (1983) Anatomical distributions of distinct [3H]-glutamate binding sites. Nature 306: 176–179

    Article  PubMed  CAS  Google Scholar 

  35. Nellgârd B, Gustafson I, Wieloch T (1991) Lack of protection by the N-methyl-Daspartate receptor blocker dizocilpine (MK-801) after transient severe cerebral ischemia in the rat. Anesthesiology 75: 279–287

    Article  PubMed  Google Scholar 

  36. Nellgârd B, Wieloch T (1992) Postischemic blockade of AMP A- but not NMD A receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cerebr Blood Flow Metabol (in press)

    Google Scholar 

  37. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307: 462–465

    Article  PubMed  CAS  Google Scholar 

  38. Onodera H, Sato G, Kogure K (1986) Lesions of the Schaffer collaterals prevent ischemic death of CA1 pyramidal cells. Neurosci Lett 68: 169–174

    Article  PubMed  CAS  Google Scholar 

  39. Petito C, Feldmann E, Pulsinelli W, Plum F (1987) Delayed hippocampal damage in humans following cardiac arrest. Neurology 37: 1282 - 1286

    Google Scholar 

  40. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–499

    Article  PubMed  CAS  Google Scholar 

  41. Pulsinelli WA, Levy DE, Duffy TE (1982) Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 11: 499–509

    Article  PubMed  CAS  Google Scholar 

  42. Pulsinelli WA, Duffy TE (1983) Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 40: 1500 - 1503

    Article  PubMed  CAS  Google Scholar 

  43. Seren MS, Aldinio C, Leon A, Nicoletti F (1989) Stimulation of inositol phospholipid hydrolysis by excitatory amino acids is enhanced in brain slices from vulnerable regions after transient global ischemia. J Neurochem 53: 1700–1705

    Article  PubMed  CAS  Google Scholar 

  44. Seubert P, Lee K, Lynch G (1989) Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res 492: 366–370

    Article  PubMed  CAS  Google Scholar 

  45. Sheardown MJ, Nielsen E, Hansen AJ, Jacobsen P, Honoré T (1990) 2,3-Dihydroxi-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247: 571–574

    Google Scholar 

  46. Siesjô BK (1988) Mechanisms of ischemic brain damage. Crit Care Med 16: 954–963

    Article  PubMed  Google Scholar 

  47. Siesjô BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calciumrelated pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9: 127–140

    Article  PubMed  Google Scholar 

  48. Smith M-L, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjô BK (1984) Models for studying long-term recovery following forebrain ischemia in the rat. A 2-vessel occlusion model. Acta Neurol Scand 69: 385–401

    Article  PubMed  CAS  Google Scholar 

  49. Smith M-L, Kalimo H, Warner DS, Siesjô BK (1988) Morphological lesions in the brain preceding the development of postischemic seizures. Acta Neuropathol (Berl) 76: 253–264

    Article  CAS  Google Scholar 

  50. Sommer B, Keinânen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Kôhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249: 1580–1585

    Article  PubMed  CAS  Google Scholar 

  51. Sterz F, Leonov Y, Safar P, Shearman GT, Stezoski SW, Perch H (1989) Effect of excitatory amino acid receptor blocker MK-801 on overall and neurological outcome after prolonged cardiac arrest in dogs. Anesthesiology 71: 907–918

    Article  PubMed  CAS  Google Scholar 

  52. Swan JH, Meldrun BS (1990) Protection by NMDA antagonists against selective cell loss following transient ischemia. J Cereb Blood Flow Metab 10: 343–351

    Article  PubMed  CAS  Google Scholar 

  53. Walicke PA (1989) Novel neurotrophic factors, receptors and oncogenes. Annu Rev Neurosci 12: 103–126

    Article  PubMed  CAS  Google Scholar 

  54. Watkins JC, Krogsgaard-Larsen P, Honoré T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11: 25–33

    Article  PubMed  CAS  Google Scholar 

  55. Westerberg E, Monaghan D, Cotman C, Wieloch T (1986) Excitatory amino acid receptors and ischemic brain damage. Neurosci Lett 73: 119–123

    Article  Google Scholar 

  56. Westerberg E, Kehr J, Ungerstedt U, Wieloch T (1988) The NMDA antagonist MK-801 reduces extracellular amino acid levels during hypoglycemia and prevents striatal damage. Neurosci Res Com 3: 151–158

    CAS  Google Scholar 

  57. Westerberg E, Monaghan D, Kalimo H, Cotman CW, Wieloch T (1989a) Dynamic changes of excitatory amino acid receptors in the rat hippocampus following transient cerebral ischemia. J Neurosci 9: 798–805

    PubMed  CAS  Google Scholar 

  58. Westerberg E, Wieloch T (1989b) Changes in excitatory amino acid receptor binding in the rat neostriatum following insulin-induced hypoglycemia. J Neurochem 52: 1340–347

    Article  PubMed  CAS  Google Scholar 

  59. Wieloch T (1985a) Neurochemical correlates to selective neuronal vulnerability. Prog Brain Res 63: 69–85

    Article  PubMed  CAS  Google Scholar 

  60. Wieloch T (1985b) Hypoglycemia-induced neuronal damage is prevented by a Nmethyl- D-aspartate receptor antagonist. Science 230: 681–683

    Article  PubMed  CAS  Google Scholar 

  61. Wieloch T, Lindvall O, Blomqvist P, Gage R (1985) Evidence for amelioration of ischemic brain damage by lesions to the perforant path. Neurol Res 7: 24–26

    PubMed  CAS  Google Scholar 

  62. Wieloch T, Engelsen, Westerberg E, Auer R (1985) Lesions of the glutamatergic cortico-striatal projections ameliorate hypoglycemic brain damage in the striatum. Neurosci Lett 58: 25–30

    Article  PubMed  CAS  Google Scholar 

  63. Wieloch T, Koide K, Westerberg E (1986) Inhibitory neurotransmitters and neuromodulators as protective agents against ischemic brain damage. In: Krieglstein K (ed) The pharmacology of ischemic brain damage. Elsevier, Amsterdam, pp 191–197

    Google Scholar 

  64. Wieloch T, Westerberg E (1989) Mechanisms of glutamate neurotoxicty in cerebral ischemia. In: Seylaz J, Sercombe R (eds) Neurotransmission and cerebrovascular function II. Elsevier, Amsterdam, pp 393–409

    Google Scholar 

  65. Wieloch T, Cardell M, Bingren H, Zivin J, Saitoh T (1991) Changes in the activity of protein kinase C and the subcellular redistribution of its isozymes during and following forebrain ischemia. J Neurochem 56: 1227–1235

    Article  PubMed  CAS  Google Scholar 

  66. Wikberg JES (1989) High affinity binding of idazoxan to a non-catecholaminergic binding site in the central nervous system: description of a putative idazoxan receptor. Pharmacol Toxicol 63: 152–155

    Article  Google Scholar 

  67. Young BA, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11: 126–133

    Article  PubMed  CAS  Google Scholar 

  68. Zafra F, Hengerer B, Leibrock J, Thoenen H, Lindholm D (1990) Activity dependent regulation of BNDF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J 9: 3545–3550

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wieloch, T. et al. (1992). Importance of Postischemic Neurotransmission in Delayed Neuronal Death. In: Ito, U., Kirino, T., Kuroiwa, T., Klatzo, I. (eds) Maturation Phenomenon in Cerebral Ischemia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77134-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77134-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54871-3

  • Online ISBN: 978-3-642-77134-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics