Advertisement

Importance of Postischemic Neurotransmission in Delayed Neuronal Death

  • T. Wieloch
  • K. Bergstedt
  • M. Cardell
  • I. Gustafson
  • T. Honoré
  • B. R. Hu
  • F. Boris-Möller
  • B. Nellgård
  • E. Westerberg

Summary

Glutamatergic and noradrenergic neurotransmissions are important for the development of delayed neuronal death. Thus, neuronal damage in the rat hippocampus following transient cerebral ischemia and in the striatum following insulin-induced hypoglycemia is mitigated by pharmacological interventions in the postinsult period. Postischemic treatment with idazoxan, an a2-adrenoceptor antagonist and ligand at imidazole receptors, decreases delayed neuronal damage following transient cerebral ischemia. Blockade of one type of glutamate receptors, the N-methyl-D-aspartate (NMDA) receptor, diminishes neuronal necrosis when given after a period of hypoglycemia but not following transient severe cerebral ischemia. Following severe ischemia blockade of the glutamatergic ionotropic quisqualate (AMPA) receptor significantly diminishes neuronal damage. During and immediately following ischemia calcium ions and changes in membrane lipid composition and structure stimulate translocation of protein kinase C (PKC) from the cytosol to the cell membranes, while later in the reperfusion phase PKC is downregulated. This may lead to an enhanced AMPA receptor activation of voltage operated ion channels in the early reperfusion phase. Later, downregulation of PKC may lead to a decreased influence of trophic factors and loss of the inhibitory feedback mechanisms regulating glutamate receptor mediated inositol trisphosphate formation causing an abberant intracellular calcium ion homeostasis.

We propose that following moderate ischemia NMDA receptors mediate glutamate neurotoxicity in the postischemic phase, while following severe ischemia the AMPA receptors are more important. The noradrenaline system may be protective by antagonizing postischemic activation of AMPA receptors. We propose that glutamatergic neurotransmission becomes deleterious following ischemia due to transient activation and delayed degradation of protein kinases.

Keywords

ischemia rat hippocampus glutamate idazoxan receptors neuronal death trophic factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers GW, Goldberg, Choi DW (1989) N-methyl-D-aspartate antagonists: ready for clinical trial in brain ischemia? Ann Neurol 25: 398–403PubMedCrossRefGoogle Scholar
  2. 2.
    Araki S, Simada Y, Kaji K, Hayashi H (1990) Role of protein kinase C in the inhibition by fibroblast growth factor of apoptosis in serum-depleted endothelial cells. Biochem Biophys Res Commun 172: 1081–1085PubMedCrossRefGoogle Scholar
  3. 3.
    Avaldano MI, Bazan NG (1975) Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia. J Neurochem 25: 919–920CrossRefGoogle Scholar
  4. 4.
    Berridge M (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159–193PubMedCrossRefGoogle Scholar
  5. 5.
    Blomqvist P, Lindvall O, Wieloch T (1985) Lesions of the locus coeruleus system aggravate ischemic damage in the rat brain. Neurosci Lett 58: 353–358PubMedCrossRefGoogle Scholar
  6. 6.
    Buszaki G, Freund TF, Bayardo F, Somogyi P (1989) Ischemia-induced changes in the electrical activity of the hippocampus. Exp Brain Res 78: 268–278Google Scholar
  7. 7.
    Cardell M, Bingren H, Wieloch T, Zivin J, Saitoh T (1990) Protein kinase C is translocated to cell membranes during cerebral ischemia. Neurosci Lett 119: 228–232PubMedCrossRefGoogle Scholar
  8. 8.
    Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369–379PubMedGoogle Scholar
  9. 9.
    Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634PubMedCrossRefGoogle Scholar
  10. 10.
    DeLeo J, Schubert P, Kreutzberg GW (1988) Protection against ischemic brain damage using propentofylline in gerbils. Stroke 19: 1535–1539CrossRefGoogle Scholar
  11. 11.
    Dumuis A, Pin JP, Oomagari K, Sebben M, Bockaert J (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347: 182–183PubMedCrossRefGoogle Scholar
  12. 12.
    Favaron M, Manev H, Alho H, Bertolino M, Ferret B, Guidotti A, Costa E (1988) Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc Natl Acad Sci USA 85: 7351–7355PubMedCrossRefGoogle Scholar
  13. 13.
    Fleischer JE, Tateishi A, Drummond JC, Scheller MS, Grafe MR, Zornow MH, Shearman GT, Shapiro HM (1989) MK-801, an excitatory amino acid, does not improve neurological outcome following cardiac arrest in cats. J Cereb Blood Flow Metab 9: 795–804PubMedCrossRefGoogle Scholar
  14. 14.
    Giffard RG, Monyer H, Christine CW, Choi DW (1990) Acidosis reduces NMDA receptor activation, glutamate neurotoxicity and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 506: 339–342PubMedCrossRefGoogle Scholar
  15. 15.
    Gill R, Foster AC, Woodruff GN (1987) Systemic administration of MK-801 protects against ischaemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 7: 3343–3349PubMedGoogle Scholar
  16. 16.
    Globus MYT, Dietrich WD, Busto R, Valdes I, Ginsberg MD (1989) The combined treatment with a dopamine Dx antagonist (SCH-23390) and NMDA receptor blocker (MK-801) dramatically protects against ischemia-induced hippocampal damage. J Cereb Blood Flow Metab 9 [Suppl 1]: S5Google Scholar
  17. 17.
    Gustafson I, Miyauchi Y, Wieloch T (1989) Postischemic administration of Idazoxan, an a-2 adrenergic receptor antagonist, decreases neuronal damage in the rat brain. J Cereb Blood Flow Metab 9: 171–174PubMedCrossRefGoogle Scholar
  18. 18.
    Gustafson I, Westerberg E, Wieloch T (1990) Protection by the a2-adrenoreceptor antagonist idazoxan against ischemia-induced neuronal damage: effects of duration and delay of postischemic treatment. J Cereb Blood Flow Metab 10: 885–894PubMedCrossRefGoogle Scholar
  19. 19.
    Hama T, Huang K-P, Guroff G (1986) Protein kinase C as a component of nerve growth factor sensitive phosphorylation system in PC 12 cells. Proc Natl Acad Sci USA 83: 2353–2357PubMedCrossRefGoogle Scholar
  20. 20.
    Hansen AJ (1985) Effects of anoxia on ionic distribution in the brain. Physiol Rev 65: 101–135PubMedGoogle Scholar
  21. 21.
    Huang K-P (1989) The mechanism of protein kinase C activation. Trends Neurosci 12: 425–432PubMedCrossRefGoogle Scholar
  22. 22.
    Ito U, Spatz M, Walker JT, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. Acta Neuropathol (Berl) 32: 209–223CrossRefGoogle Scholar
  23. 23.
    Jorgensen MB, Johansen FF, Diemer NH (1987) Removal of the enthorhinal cortex protects hippocampal CA-1 neurons from ischemic damage. Acta Neuropathol (Berl) 73: 189–194CrossRefGoogle Scholar
  24. 24.
    Kaczmarek L (1987) The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurosci 10: 30–34CrossRefGoogle Scholar
  25. 25.
    Kalimo H, Auer RN, Siesjo BK (1985) The temporal evolution of hypoglycemic brain damage. III. Light and electron microscopic findings in the rat caudoputamen. Acta Neuropathol (Berl) 67: 37–50Google Scholar
  26. 26.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57 - 69PubMedCrossRefGoogle Scholar
  27. 27.
    Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol (Berl) 62: 209–218CrossRefGoogle Scholar
  28. 28.
    Kochhar A, Saitoh T, Zivin J (1989) Reduced protein kinase C activity in ischemic spinal cord. J Neurochem 53: 946–952PubMedCrossRefGoogle Scholar
  29. 29.
    Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoon T, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249: 556–560PubMedCrossRefGoogle Scholar
  30. 30.
    Lauritzen M, Hansen AJ, Kronborg D, Wieloch T (1990) Cortical spreading depression is associated with arachidonic acid accumulation and preservation of energy charge. J Cereb Blood Flow Metab 10: 115–120PubMedCrossRefGoogle Scholar
  31. 31.
    Lindén T, Kalimo H, Wieloch T (1987) Protective effect of lesion to the glutamatergic cortico-striatal projections on the hypoglycemic nerve cell injury in rat striatum. Acta Neuropathol (Berl) 74: 335–344CrossRefGoogle Scholar
  32. 32.
    Louis J-C, Magal E, Yavin E (1988) Protein kinase C alterations in the fetal rat brain after global ischemia. J Biol Chem 263: 19282–19285PubMedGoogle Scholar
  33. 33.
    Mayer ML, Miller RJ (1990) Excitatory amino acid receptors, second messengers and= regulation of intracellular Ca2+ in mammalian neurons. Trends Pharmacol Sci 11: 254–260PubMedCrossRefGoogle Scholar
  34. 34.
    Monaghan DT, Holets VR, Toy DW, Cotman C (1983) Anatomical distributions of distinct [3H]-glutamate binding sites. Nature 306: 176–179PubMedCrossRefGoogle Scholar
  35. 35.
    Nellgârd B, Gustafson I, Wieloch T (1991) Lack of protection by the N-methyl-Daspartate receptor blocker dizocilpine (MK-801) after transient severe cerebral ischemia in the rat. Anesthesiology 75: 279–287PubMedCrossRefGoogle Scholar
  36. 36.
    Nellgârd B, Wieloch T (1992) Postischemic blockade of AMP A- but not NMD A receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cerebr Blood Flow Metabol (in press)Google Scholar
  37. 37.
    Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307: 462–465PubMedCrossRefGoogle Scholar
  38. 38.
    Onodera H, Sato G, Kogure K (1986) Lesions of the Schaffer collaterals prevent ischemic death of CA1 pyramidal cells. Neurosci Lett 68: 169–174PubMedCrossRefGoogle Scholar
  39. 39.
    Petito C, Feldmann E, Pulsinelli W, Plum F (1987) Delayed hippocampal damage in humans following cardiac arrest. Neurology 37: 1282 - 1286Google Scholar
  40. 40.
    Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–499PubMedCrossRefGoogle Scholar
  41. 41.
    Pulsinelli WA, Levy DE, Duffy TE (1982) Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 11: 499–509PubMedCrossRefGoogle Scholar
  42. 42.
    Pulsinelli WA, Duffy TE (1983) Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 40: 1500 - 1503PubMedCrossRefGoogle Scholar
  43. 43.
    Seren MS, Aldinio C, Leon A, Nicoletti F (1989) Stimulation of inositol phospholipid hydrolysis by excitatory amino acids is enhanced in brain slices from vulnerable regions after transient global ischemia. J Neurochem 53: 1700–1705PubMedCrossRefGoogle Scholar
  44. 44.
    Seubert P, Lee K, Lynch G (1989) Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res 492: 366–370PubMedCrossRefGoogle Scholar
  45. 45.
    Sheardown MJ, Nielsen E, Hansen AJ, Jacobsen P, Honoré T (1990) 2,3-Dihydroxi-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247: 571–574Google Scholar
  46. 46.
    Siesjô BK (1988) Mechanisms of ischemic brain damage. Crit Care Med 16: 954–963PubMedCrossRefGoogle Scholar
  47. 47.
    Siesjô BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calciumrelated pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9: 127–140PubMedCrossRefGoogle Scholar
  48. 48.
    Smith M-L, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjô BK (1984) Models for studying long-term recovery following forebrain ischemia in the rat. A 2-vessel occlusion model. Acta Neurol Scand 69: 385–401PubMedCrossRefGoogle Scholar
  49. 49.
    Smith M-L, Kalimo H, Warner DS, Siesjô BK (1988) Morphological lesions in the brain preceding the development of postischemic seizures. Acta Neuropathol (Berl) 76: 253–264CrossRefGoogle Scholar
  50. 50.
    Sommer B, Keinânen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Kôhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249: 1580–1585PubMedCrossRefGoogle Scholar
  51. 51.
    Sterz F, Leonov Y, Safar P, Shearman GT, Stezoski SW, Perch H (1989) Effect of excitatory amino acid receptor blocker MK-801 on overall and neurological outcome after prolonged cardiac arrest in dogs. Anesthesiology 71: 907–918PubMedCrossRefGoogle Scholar
  52. 52.
    Swan JH, Meldrun BS (1990) Protection by NMDA antagonists against selective cell loss following transient ischemia. J Cereb Blood Flow Metab 10: 343–351PubMedCrossRefGoogle Scholar
  53. 53.
    Walicke PA (1989) Novel neurotrophic factors, receptors and oncogenes. Annu Rev Neurosci 12: 103–126PubMedCrossRefGoogle Scholar
  54. 54.
    Watkins JC, Krogsgaard-Larsen P, Honoré T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11: 25–33PubMedCrossRefGoogle Scholar
  55. 55.
    Westerberg E, Monaghan D, Cotman C, Wieloch T (1986) Excitatory amino acid receptors and ischemic brain damage. Neurosci Lett 73: 119–123CrossRefGoogle Scholar
  56. 56.
    Westerberg E, Kehr J, Ungerstedt U, Wieloch T (1988) The NMDA antagonist MK-801 reduces extracellular amino acid levels during hypoglycemia and prevents striatal damage. Neurosci Res Com 3: 151–158Google Scholar
  57. 57.
    Westerberg E, Monaghan D, Kalimo H, Cotman CW, Wieloch T (1989a) Dynamic changes of excitatory amino acid receptors in the rat hippocampus following transient cerebral ischemia. J Neurosci 9: 798–805PubMedGoogle Scholar
  58. 58.
    Westerberg E, Wieloch T (1989b) Changes in excitatory amino acid receptor binding in the rat neostriatum following insulin-induced hypoglycemia. J Neurochem 52: 1340–347PubMedCrossRefGoogle Scholar
  59. 59.
    Wieloch T (1985a) Neurochemical correlates to selective neuronal vulnerability. Prog Brain Res 63: 69–85PubMedCrossRefGoogle Scholar
  60. 60.
    Wieloch T (1985b) Hypoglycemia-induced neuronal damage is prevented by a Nmethyl- D-aspartate receptor antagonist. Science 230: 681–683PubMedCrossRefGoogle Scholar
  61. 61.
    Wieloch T, Lindvall O, Blomqvist P, Gage R (1985) Evidence for amelioration of ischemic brain damage by lesions to the perforant path. Neurol Res 7: 24–26PubMedGoogle Scholar
  62. 62.
    Wieloch T, Engelsen, Westerberg E, Auer R (1985) Lesions of the glutamatergic cortico-striatal projections ameliorate hypoglycemic brain damage in the striatum. Neurosci Lett 58: 25–30PubMedCrossRefGoogle Scholar
  63. 63.
    Wieloch T, Koide K, Westerberg E (1986) Inhibitory neurotransmitters and neuromodulators as protective agents against ischemic brain damage. In: Krieglstein K (ed) The pharmacology of ischemic brain damage. Elsevier, Amsterdam, pp 191–197Google Scholar
  64. 64.
    Wieloch T, Westerberg E (1989) Mechanisms of glutamate neurotoxicty in cerebral ischemia. In: Seylaz J, Sercombe R (eds) Neurotransmission and cerebrovascular function II. Elsevier, Amsterdam, pp 393–409Google Scholar
  65. 65.
    Wieloch T, Cardell M, Bingren H, Zivin J, Saitoh T (1991) Changes in the activity of protein kinase C and the subcellular redistribution of its isozymes during and following forebrain ischemia. J Neurochem 56: 1227–1235PubMedCrossRefGoogle Scholar
  66. 66.
    Wikberg JES (1989) High affinity binding of idazoxan to a non-catecholaminergic binding site in the central nervous system: description of a putative idazoxan receptor. Pharmacol Toxicol 63: 152–155CrossRefGoogle Scholar
  67. 67.
    Young BA, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11: 126–133PubMedCrossRefGoogle Scholar
  68. 68.
    Zafra F, Hengerer B, Leibrock J, Thoenen H, Lindholm D (1990) Activity dependent regulation of BNDF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J 9: 3545–3550PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • T. Wieloch
  • K. Bergstedt
  • M. Cardell
  • I. Gustafson
  • T. Honoré
  • B. R. Hu
  • F. Boris-Möller
  • B. Nellgård
  • E. Westerberg

There are no affiliations available

Personalised recommendations