Biologie der gliösen Hirntumoren: Experimentelle Ansätze bei der Therapie maligner Hirntumoren

  • M. Westphal
  • W. Hamel
  • L. Anker
  • H. Nausch
  • D. Zirkel
  • H.-D. Herrmann
Conference paper

Zusammenfassung

Im Vordergrund der biologischen Beurteilungsproblematik der Gliome stehen derzeit im wesentlichen zwei Themenkomplexe:
  • Es gibt in Hinblick auf die Entwicklungslinien der unterschiedlichen Gliaformen im ausdifferenzierten Gehirn und die entsprechenden Signale, die für diese Differenzierung verantwortlich sind, noch keine verläßlichen Informationen.

  • Man muß davon ausgehen, daß auch bei Gliomen, insbesondere bei den malignen Formen, einerseits eine Aktivierung bzw. sogar Überexpression von Genen nachweisbar ist, die den Zellen einen Wachstumsvorteil verleihen. Andererseits kommt es zu Funktionsverlusten von entscheidenden zellulären Kontrollgenen. Man kann dabei nicht sagen, welchem Phänomen die größere Bedeutung zukommt, oder ob die Ereignisse sogar verknüpft sind, d. h. daß die Gene, die einen Wachstumsvorteil vermitteln, dadurch angeschaltet werden, daß durch den Funktionsverlust eines Kontrollgenes ein zelluläres Programm aktiviert wird.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aaronson SA (1991) Growth factors and cancer. Science 254:1146–1153PubMedCrossRefGoogle Scholar
  2. Bögler O, Wren D, Barnett SC, Land H, Noble M (1990) Cooperation between two growth factors promotes extended self renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (0–2A) progenitor cells. Proc Natl Acad Sci USA 87:6368–6372PubMedCrossRefGoogle Scholar
  3. Cavanee WK (1991) Recessive mutations in the causation of human cancer. Cancer 67:2431–2435CrossRefGoogle Scholar
  4. Compston DAS, Scolding NJ, Wren DR, Noble M (1991) The pathogenesis of demyelinating disease: Insights from cell biology. Trends in Neurosci 14:175–182CrossRefGoogle Scholar
  5. Gross JL, Morrison RS, Eidsvoog K, Herblin WF, Kornblith PL, Dexter DL (1990) Basic fibroblast growth factor: A potential autocrine regulator of human glioma cell growth. J Neurosci Res 27:689–696PubMedCrossRefGoogle Scholar
  6. Heldin CH, Betzholz C, Claesson-Welsh L, Westermark B (1987) Subversion of growth regulatory pathways in malignant transformation. Biochem Biophys Acta 907:219–244PubMedGoogle Scholar
  7. James CD, Carlbom E, Nordenskjöld M, Collins VP, Cavanee WK (1989) Mitotic recombination of chromosomes in astrocytes. Proc Natl Acad Sci USA 86:2858–2862PubMedCrossRefGoogle Scholar
  8. Kennedy PGE, Watkins BA, Thomas DGT, Noble MD (1987) Antigenic expression by cells derived from human gliomas does not correlate with morphological classification. Neuropathol Appl Neurobiol 13:327–347PubMedCrossRefGoogle Scholar
  9. Mercer WE, Shields MT, Amin M, Sauve GJ, Apella E, Romano JW, Ullrich SJ (1990) Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci USA 87:6166–6170PubMedCrossRefGoogle Scholar
  10. Mikkelsen T, Cairncross G, Cavanee WK (1991) Genetics of the malignant progression of astrocytoma. J Cell Biochem 46:3–8PubMedCrossRefGoogle Scholar
  11. Nister M, Libermann TA, Betsholtz C, Pettersson M, Claesson-Welsh L, Heldin CH, Schlessinger J, Westermark B (1988) Expression of messenger RNAs for platelet derived growth factor and transforming growth factor alpha and their receptors in human malignant glioma cell lines. Cancer Res 48:3910–3918PubMedGoogle Scholar
  12. Noble M, Ataliotis P, Barnett SC, Bevan K, Bögler O, Jat P, Wolswijk G, Wren DR (1992) Development, differentiation and neoplasia in glial cells of the central nervous system. Ann New York Acad Sci, in pressGoogle Scholar
  13. Pollack IF, Randall MS, Kristofik MP, Kelly RH, Selker RG, Vertosik FT (1991) Response of low-passage human malignant gliomas in vitro to stimulation and selective inhibition of growth factormediated pathways. J Neurosurg 75:284–293PubMedCrossRefGoogle Scholar
  14. Raff MC (1989) Glial cell diversification in the rat optic nerve. Science 243:1450–1455PubMedCrossRefGoogle Scholar
  15. Raff MD, Lillien LE, Richardson WD, Burne JF, Noble MD (1988) Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333:562–565PubMedCrossRefGoogle Scholar
  16. Venter DJ, Bevan KL, Ludwig RL, Riley TEW, Jat PS, Thomas DGT, Noble M (1991) Retinoblastoma gene deletions in human glioblastomas. Oncogene 6:445–448PubMedGoogle Scholar
  17. Weinberg RA (1991) Tumor suppressor genes. Science 254:1138–1146PubMedCrossRefGoogle Scholar
  18. Werner MH, Humphrey PA, Bigner DD, Bigner SH (1988) Growth effects of epidermal growth factor (EGF) and a monoclonal antibody against the EGF receptor on four glioma cell lines. Acta Neuropathol 77:196–201PubMedGoogle Scholar
  19. Westphal M, Herrmann H-D (1989) Growth factor biology and oncogene activation in human gliomas and their implications for specific therapeutic concepts. Neurosurgery 25:681–694PubMedCrossRefGoogle Scholar
  20. Westphal M, Nausch H, Herrmann HD (1990) Antigenic staining patterns of human glioma cultures: primary cultures, long term cultures and cell lines. J Neurocytol 19:466–477PubMedCrossRefGoogle Scholar
  21. Westphal M, Nausch H, Herrmann HD (1991a) Modulation of antigenic staining patterns of human glioma cultures: Effect of culture conditions and time. Brain Tumor Pathol 8:195–200Google Scholar
  22. Westphal M, Ackermann E, Hoppe J, Herrmann HD (1991b) Receptors for platelet derived growth factor in human glioma cell lines and influence of suramin on cell proliferation. J Neurooncol 11:207–213PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • M. Westphal
  • W. Hamel
  • L. Anker
  • H. Nausch
  • D. Zirkel
  • H.-D. Herrmann

There are no affiliations available

Personalised recommendations