Skip to main content

Cell Volume Regulation and Vascular Endothelial Function

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 14))

  • 57 Accesses

Abstract

In the vasculature, the endothelium consists of a single monolayer that forms an interface between the blood and the underlying vessel and tissue. Accordingly, it has specialized functions that are critical to normal vascular function. Most apparent is its role as a physical barrier. Endothelial injury with subsequent exposure of subendothelial matrix may be important in the genesis of a variety of thrombotic disorders. Endothelial denudation may be an early event in atherosclerosis, resulting in platelet activation, release of platelet-derived growth factor, and eventual migration and proliferation of smooth muscle cells in the intima (Ross 1986). In addition to being a physical barrier, endothelium is a selective permeability barrier, allowing passage of nutrients and restricting passage of macromolecules. This is particularly important in the cerebral vasculature, where endothelium forms the blood-brain barrier (Janzer and Raff 1987), and in the renal glomerulus, where endothelium contributes to the ultrafiltration barrier. Endothelium also has important paracrine functions in blood vessels that allow it to regulate platelet and leukocyte function, on the one hand, and vascular smooth muscle tone, on the other (Vane et al. 1990). Through these various properties the endothelium plays a critical role in governing thrombosis, inflammation, and hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Barakeh J, Laskey R, van Breemen C (1989) Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J 3: 2389–2400

    PubMed  CAS  Google Scholar 

  • Ando J, Komatsuda T, Kamiya A (1988) Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro. Cell Dev Biol 24: 871–877

    Article  PubMed  CAS  Google Scholar 

  • Betz AL (1983) Sodium transport in capillaries isolated from rat brain. J Neurochem 41: 1150–1157

    Article  PubMed  CAS  Google Scholar 

  • Bevan JA, Laher I (1991) Pressure and flow-dependent vascular tone. FASEB J 5: 2267–2273

    PubMed  CAS  Google Scholar 

  • Breitwieser GE, Altamirano AA, Russell JM (1990) Osmotic stimulation of Na+-K+-Cl cotransport in squid giant axon is [Cl]i dependent. Am J Physiol 258: C749–C753

    PubMed  CAS  Google Scholar 

  • Brock TA, Brugnara C, Canessa M, Gimbrone MA Jr (1986) Bradykinin and vasopressin stimulate Na+-K+-Cl cotransport in cultured endothelial cells. Am J Physiol 250: C888–C895

    PubMed  CAS  Google Scholar 

  • Buga GH, Gold ME, Fukuto JM, Ipnarro LJ (1991) Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 17: 187–193

    PubMed  CAS  Google Scholar 

  • Christensen O (1987) Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Colden-Stanfield M, Schilling WP, Possani LD, Kunze DL (1990) Bradykinin-induced potassium current in cultured bovine aortic endothelial cells. J Membr Biol 116: 227–238

    Article  PubMed  CAS  Google Scholar 

  • Eaton DC (1991) Channels in epithelial tissue. In: Schafer J (ed) Membrane transport in biology. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Escobales N, Longo E, Cragoe EJ Jr, Danthuluri NR, Brock TA (1990) Osmotic activation of Na+-H+ exchange in human endothelial cells. Am J Physiol 259: C640–C646

    PubMed  CAS  Google Scholar 

  • Eveloff JL, Warnock DG (1987) Activation of ion transport systems during cell volume regulation. Am J Physiol 252: F1–F10

    PubMed  CAS  Google Scholar 

  • Fichtner H, Forbe U, Busse R, Kohlhardt M (1987) Single nonselective cation channels and Ca2+ activated K+ channels in aortic endothelial cells. J Membr Biol 98: 125–133

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Hagiwara H, Ohuchi S, Kozuka M, Ishido M, Hirose S (1989) Stimulation of Na-K-Cl cotransport in cultured vascular endothelial cells by artial natriuretic peptide. Biophys Res Commun 159: 734–740

    Article  CAS  Google Scholar 

  • Galdal KS, Evansan SA, Nilsen E (1983) Thrombin-induced shape changes of cultured endothelial cells: metabolic and functional observations. Thromb Res 32: 57–66

    Article  PubMed  CAS  Google Scholar 

  • Garcia JGN, Siflinger-Birnboim A, Bizios R, DelVecchio PJ, Fenton JW, Malik AB (1986) Thrombin-induced increase in albumin permeability across the endothelium. J Cell Physiol 128: 96–104

    Article  PubMed  CAS  Google Scholar 

  • Gerritsen ME, Perry CA, Moatter T, Cragoe EJ Jr, Medow MS (1989) Agonist-specific role for Na+-H+ antiport in prostaglandin release from microvessel endothelium. Am J Physiol 256: C831–C839

    PubMed  CAS  Google Scholar 

  • Goligorsky MS (1988) Mechanical stimulation induces Cai 2+ transients and membrane depolarization in cultured endothelial cells. FEBS Lett 240: 59–64

    Article  PubMed  CAS  Google Scholar 

  • Grabowski EF, Jaffe EA, Weksler BB (1985) Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med 105: 36–43

    PubMed  CAS  Google Scholar 

  • Haas M, Forbush B (1986) [3H]Bumetanide binding to duck red cells. Correlation with inhibition of (Na+K+2C1) co-transport. J Biol Chem. 261: 8434–8441

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69: 315–382

    PubMed  CAS  Google Scholar 

  • Ives SL, Eskin SG, Mclntire LV (1986) Mechanical effects on endothelial morphology: in vitro assessment. In Vitro. Cell Dev Biol 22: 500–507

    Article  PubMed  CAS  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325: 253–257

    Article  PubMed  CAS  Google Scholar 

  • Johns A, Lategan TW, Lodge NJ, Ryan US, van Breeman C, Adams DJ (1987) Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue Cell 19: 733–745

    Article  PubMed  CAS  Google Scholar 

  • Kempski O, Spatz M, Valet G, Baethmann A (1985) Cell volume regulation of cerebrovascular endothelial in vitro. J Cell Physiol 123: 51–54

    Article  PubMed  CAS  Google Scholar 

  • Killackey JJF, Johnston MG, Movat HZ (1986) Increased permeability of microcarrier-cultured endothelial monolayers in response to histamine and thrombin. Am J Pathol 122: 50–61

    PubMed  CAS  Google Scholar 

  • Kitazono T, Takeshige K, Cragoe EJ Jr, Minakami S (1988) Intracellular pH changes of cultured bovine aortic endothelial cells in response to ATP addition. Biochem Biophys Res Commun 152: 1304–1309

    Article  PubMed  CAS  Google Scholar 

  • Klein JD, O’Neill WC (1990) Effect of bradykinin on Na-K-2C1 cotransport and bumetanide binding in aortic endothelial cells. J Biol Chem 265: 22238–22242

    PubMed  CAS  Google Scholar 

  • Lang F, Rehwald W (1991) Potassium channels in renal epithelial transport regulation. Physiol Rev 72: 1–32

    Google Scholar 

  • Lansman JB (1988) Going with the flow. Nature 331: 481–482

    Article  PubMed  CAS  Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 235: 811–813

    Article  Google Scholar 

  • Laposata M, Dovarsky DK, Shin HS (1983) Thrombin-induced gap formation in confluent endothelial cell monolayers in vitro. Blood 62: 549–556

    PubMed  CAS  Google Scholar 

  • Levesque MJ, Sprague EA, Schwartz CJ, Nerem RM (1989) The influence of shear stress on cultured vascular endothelial cells: the stress response of an anchorage-dependent mammalian cell. Biotechnol Prog 5: 1–8

    Article  Google Scholar 

  • Levinson C (1990) Regulatory volume increase in Ehrlich ascites tumor cells. Biochim Biophys Acta 1021: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Ling BN, O’Neill WC (1991) Potassium channel activation by hypotonic shock in bovine aortic endothelial cells. Clin Res 39: 194A

    Google Scholar 

  • Ling BN, Webster CL, Eaton DC (1991) Eicosanoids modulate apical Ca2+-dependent K+ in principal cells. Am J Physiol (in press)

    Google Scholar 

  • Majno G, Shea SM, Leventhal M (1969) Endothelial contraction induced by histamine-type mediators. An electron microscopy study. J Cell Biol 42: 647–672

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni MC, Lundgren E, Arfors K-E, Intaglietta M (1989) Volume changes of an endothelial cell monolayer on exposure to anisotonic media. J Cell Physiol 140: 272–280

    Article  PubMed  CAS  Google Scholar 

  • Mclntyre TM, Zimmerman GA, Satch K, Prescott SM (1985) Cultured endothelial cells synthesize both platelet activating factor and prostacyclin in response to histamine bradykinin and adenosine triphosphate. J Clin Invest 76: 271–280

    Article  Google Scholar 

  • Morris CE (1990) Mechanosensitive ion channels. J Membr Biol 113: 93–107

    Article  PubMed  CAS  Google Scholar 

  • Myers PR, Guerra R, Harrison DG (1989) Release of No and EDRF from cultured bovine aortic endothelial cells. Am J Physiol 256: H1030–H1037

    PubMed  CAS  Google Scholar 

  • Nilius B (1990) Permeation properties of a non-selective cation channel in human vascular endothelial cells. Pflügers Arch Eur J Physiol 416: 609–611

    Article  CAS  Google Scholar 

  • Nollert MU, Hall ER, Eskin SG, Mclntire LV (1989) The effect of shear stress on the uptake and metabolism of archidonic acid by human endothelial cells. Biochem Biophys Acta 1005: 72–78

    PubMed  CAS  Google Scholar 

  • Nollert MU, Eskin SG, Mclntire LV (1990) Shear stress increases inositol triphosphate levels in human endothelial cells. Biochem Biophys Res Commun 170: 281–287

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell ME (1989a) Regulation of Na-K-Cl cotransport in endothelial cells by atrial natriuretic factor. Am J Physiol 257: C36–C44

    PubMed  Google Scholar 

  • O’Donnell ME (1989b) [3H]Bumetanide binding in vascular endothelial cells. Quantitation of Na-K-Cl cotransporters. J Biol Chem 264: 20326–20330

    PubMed  Google Scholar 

  • O’Donnell ME (1991) Endothelial cell sodium-potassium-chloride cotransport – evidence of regulation by Ca2+ and protein kinase C*. J Biol Chem 266: 11559–11566

    PubMed  Google Scholar 

  • Olesen S-P, Clapham DE, Davies PF (1988a) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331: 168–170

    Article  PubMed  CAS  Google Scholar 

  • Olesen S-P, Davies PF, Clapham DE (1988b) Muscarinic-activated K+ current in bovine aortic endothelial cells. Circ Res 62: 1059–1064

    PubMed  CAS  Google Scholar 

  • O’Neill WC, Klein JD (1992) Regulation of vascular endothelial cell volume by Na-K-2C1 cotransport. Am J Physiol 262: C436–C444

    PubMed  Google Scholar 

  • O’Neill WC, Kartsonis N, Klein JD (1991) Role of protein phosphorylation in the regulation of Na-K-2C1 cotransport by cell volume in aortic endothelial cells. J Am Soc Nephrol (Abstr) 2: 747

    Google Scholar 

  • Pewitt EB, Hedge RS, Haas M, Palfrey HC (1990) The regulation of Na/K/2C1 cotransport and bumentanide binding in avian erythrocytes by protein phosphorylation and dephosphorylation. J Biol Chem 19: 20747–20756

    Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis - an update. New Eng J Med 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250: H1145–H1149

    PubMed  CAS  Google Scholar 

  • Rubanyi GM, Freay AD, Kauser K, Johns A, Harder DR (1990) Mechanoreception by the endothelium: mediators and mechanism of pressure- and flow-induced vascular responses. Blood Vessels 27: 246–257

    PubMed  CAS  Google Scholar 

  • Sachs F (1987) Baroreceptor mechanisms at the cellular level. Fed Proc 46: 12–16

    PubMed  CAS  Google Scholar 

  • Sackin H (1987) Stretch-activated potassium channels in renal proximal tubule. Am J Physiol 253: F1253–F1262

    PubMed  CAS  Google Scholar 

  • Sato M, Levesque MJ, Nerem RM (1987) Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7: 276–286

    Article  PubMed  CAS  Google Scholar 

  • Sauve R, Parent L, Simoneau C, Roy G (1988) External ATP triggers a biphasic activation process of a calcium-dependent K+ channel in cultured bovine aortic endoethelial cells. Pflügers Arch Eur J Physiol 412: 469–481

    Article  CAS  Google Scholar 

  • Shepard JM, Goderie SK, Brzyski N, Del Vecchio PJ, Malik AB, Kimelberg HK (1987) Effects of alterations in endothelial cell volume on transendothelial albumin permeability. J Cell Physiol 133: 389–394

    Article  PubMed  CAS  Google Scholar 

  • Shirinsky VP, Antonov AS, Birukov KG, Sobolevsky AV, Romanov YA, Kabaeva NV (1989) Mechano-chemical control of human endothelium orientation and size. J Cell Biol 109: 331–339

    Article  PubMed  CAS  Google Scholar 

  • Sun AM, Saltzberg SN, Kikeri D, Hebert SC (1990) Mechanisms of cell volume regulation by the mouse medullary thick ascending limb of Henle. Kidney Int 38: 1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Vane JR, Änggåard EE, Botting RM (1990) Regulatory functions of the vascular endothelium. New Eng J Med 323: 27–36

    Article  PubMed  CAS  Google Scholar 

  • Vigne P, Campigny G, Marsault R, Barbry P, Frelin C, Lazdunski M (1989) A new type of amiloride-sensitive cationic channel in endothelial cells of brain microvessels. J Biol Chem 264: 7663–7668

    PubMed  CAS  Google Scholar 

  • Watson PA (1991) Function follows form: generation of intracellular signals by cell deformation. FASEB J 5: 2013–2019

    PubMed  CAS  Google Scholar 

  • Wells SL, Shepro D, Hechtman HB (1985) Vasoactive amines modulate actin cables (stress fibers) and surface area in cultured bovine endothelium. J Cell Physiol 123: 337–342

    Article  Google Scholar 

  • Wong AJ, Pollard TD (1983) Actin filament stress fibers in vascular endothelial cells in vivo. Science 219: 867

    Article  PubMed  CAS  Google Scholar 

  • Yoshizumi M, Kurihara H, Sugiyama T, Takaku F, Yanagisana M, Masaki T, Yazaki Y (1989) Hermodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem Biophys Res Commun 161: 859–864

    Article  PubMed  CAS  Google Scholar 

  • Zarins CK, Zatina MA, Giddend DP, Ku DN, Glagov S (1987) Shear stress regulation of artery lumen diameter in experimental arterogenesis. J Vase Surg 5: 413–420

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Neill, W.C. (1993). Cell Volume Regulation and Vascular Endothelial Function. In: Lang, F., Häussinger, D. (eds) Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77124-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77124-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77126-2

  • Online ISBN: 978-3-642-77124-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics