Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 14))

Abstract

In all endocrine and most exocrine cells the secretory process comprises the release of organic material by exocytosis or by constitutive secretion. In addition, the transport of water and electrolytes from the basolateral (capillary) side to the apical lumen (acinus) is an essential characteristic of secretion from exocrine glands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aickin CC, Brading AF (1985) Advances in the understanding of transmembrane ionic gradients and permeabilities in smooth muscle obtained by using ion-selective microelectrodes. Experientia 41: 879–887

    Article  PubMed  CAS  Google Scholar 

  • Barrowman MM, Cockcroft S, Gomperts BD (1986) Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature 319: 504–507

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositoltrisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Blackerd WG, Kikuchi M, Rebinovitch A, Renold AE (1975) An effect of hypoosmolarity on renin release in vitro. Am J Physiol 228: 706–712

    Google Scholar 

  • Brayden DJ, Cuthbert AW, Lee CM (1988) Human eccrine sweat gland epithelial cultures express ductal characteristics. J Physiol 405: 657–675

    PubMed  CAS  Google Scholar 

  • Breckenridge LJ, Aimers W (1987) Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sci USA 84: 1945–1949

    Article  PubMed  CAS  Google Scholar 

  • Brown EM (1991) Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev 71: 371–410

    PubMed  CAS  Google Scholar 

  • Brown EM, Pazoles CJ, Creutz CE, Aurbach GD, Pollard HB (1978) Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Proc Natl Acad Sci USA 75: 876

    Article  CAS  Google Scholar 

  • Brown EM, Enyedi P, Leboff M, Rotberg J, Preston J, Chen C (1987) High extracellular Ca2+ and Mg2+ stimulate accumulation of inositol phosphates in bovine parathyroid cells. FEBS Lett 218: 113–118

    Article  PubMed  CAS  Google Scholar 

  • Bruce BR, Anderson NS Jr (1979) Hyperpolarization in mouse parathyroid cells by low calcium. Am J Physiol 236 (1): C15–C21

    PubMed  CAS  Google Scholar 

  • Bührle CP, Nobiling R, Taugner R (1985) Intracellular recordings from renin-positive cells of the afferent arteriole. Am J Physiol 249: F272–F281

    PubMed  Google Scholar 

  • Burgen ASV, Emmelin N (1961) Physiology of salivary glands. (Physiol Soc Monogr 8) Arnold, London

    Book  Google Scholar 

  • Casey PJ, Gilman AG (1988) G protein involvement in receptor-effector coupling. J Biol Chem 263: 2577–2580

    PubMed  CAS  Google Scholar 

  • Chen CJ, Anast CS, Brown EM (1987) High osmolality: a potent parathyroid hormone secretogogue in dispersed parathyroid cells. Endocrinology 121: 958–964

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, Gomperts BD (1985) Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314: 534–536

    Article  PubMed  CAS  Google Scholar 

  • Cohen FS, Zimmerberg J, Finkelstein A (1980) Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of vesicular membrane marker into the planar membrane. J Gen Physiol 75: 251–270

    Article  PubMed  CAS  Google Scholar 

  • De Lisle RC, Williams JA (1986) Regulation of membrane fusion in secretory exocytosis. Annu Rev Physiol 48: 225–238

    Article  PubMed  Google Scholar 

  • Delia Bruna R, Pinet F, Corvol P, Kurtz A (1991) Regulation of renin secretion and rennin synthesis by second messengers in isolated mouse juxtaglomerular cells. Cell Physiol Biochem 1: 98–110

    Article  Google Scholar 

  • Douglas WW (1968) Stimulus secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34: 451–474

    PubMed  CAS  Google Scholar 

  • Exley PM, Fuller CM, Gallacher DV (1986) Potassium uptake in the mouse submandibular gland is dependent on chloride and sodium and abolished by piretanide. J Physiol 378: 97–108

    PubMed  CAS  Google Scholar 

  • Finkelstein A, Zimmerberg J, Cohen FS (1986) Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis. Annu Rev Physiol 48: 163–174

    Article  PubMed  CAS  Google Scholar 

  • Fishman MC (1976) Membrane potential of juxtaglomerular cells. Nature 260: 542–544

    Article  PubMed  CAS  Google Scholar 

  • Foskett JK (1990) Ca modulation of Cl content controls cell volume in single salivary acinar cells during fluid secretion. Am J Physiol 259: C998–C1004

    PubMed  CAS  Google Scholar 

  • Foskett JK, Melvin JE (1989) Activation of salivary secretion: coupling of cell volume and Ca in single cells. Science 244: 1582–1585

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen O, Leyssac PP, Skinner SL (1975) Sensitive osmometer function of juxtaglomerular cells in vitro. J Physiol 252: 669–679

    PubMed  CAS  Google Scholar 

  • Frizzel RA, Halm DR, Rechkemmer G, Shoemaker RL (1986) Chloride channel regulation in secretory epithelia. Fed Proc 45: 2727–2731

    Google Scholar 

  • Green DPL (1987) Granule swelling and membrane fusion in exocytosis. J Cell Sci 88: 547–549

    PubMed  Google Scholar 

  • Greer MA, Greer SE, Opsahl Z, McCafferty L, Maruta S (1983) Hypoosmolar stimulation of in vitro pituitary secretion of luteinizing hormone: a potential clue to the secretory process. Endocrinology 113: 1531–1533

    Article  PubMed  CAS  Google Scholar 

  • Greer MA, Greer SE, Opsahl Z, Maruta S (1985) Comparison of hypoosmolar and hyperosmolar effects on in vitro luteinizing hormone secretion by anterior pituitary cells. Proc Soc Exp Biol Med 178: 24–28

    PubMed  CAS  Google Scholar 

  • Hampton RY, Holz RW (1983) Effects of changes of osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis. J Cell Biol 96: 1082–1088

    Article  PubMed  CAS  Google Scholar 

  • Holz RW (1986) The role of osmotic forces in exocytosis from adrenal chromaffin cells. Annu Rev Physiol 48: 175–189

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki N, Petersen OH (1978) Electrical coupling and uncoupling of exocrine acinar cells. J Cell Biol 79: 533–545

    Article  PubMed  CAS  Google Scholar 

  • Jia M, Ehrenstein G, Iwasa K (1988) Unusual calcium activated potassium channels of bovine parathyroid cells. Proc Natl Acad Sci USA 85: 7236–7239

    Article  PubMed  CAS  Google Scholar 

  • Kanagasuntheram P, Randle PJ (1976) Calcium metabolism and amylase release in rat parotid acinar cells. Biochem J 160: 547–564

    PubMed  CAS  Google Scholar 

  • Kasai H, Augustine GJ (1990) Cytosotic calcium gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348: 735–738

    Article  PubMed  CAS  Google Scholar 

  • Kazilek CJ, Merkle CJ, Chandler DE (1988) Hyperosmotic inhibition of calcium signals and exocytosis in rabbit neutrophils. Am J Physiol 254: C709–C718

    PubMed  CAS  Google Scholar 

  • Keryer G, Rossignol B (1976) Effect of carbachol on 45Ca uptake and protein secretion in rat lacrimal gland. Am J Physiol 230: 99–104

    PubMed  CAS  Google Scholar 

  • Knight DE (1987) Calcium and diacylglycerol control of secretion. Biosci Rep 7: 355–367

    Article  PubMed  CAS  Google Scholar 

  • Krouse ME, Hagiwara G, Chen J, Lewiston NJ, Wine JJ (1989) Ion channels in normal human and cystic fibrosis sweat gland cells. Am J Physiol 257: C129–C140

    PubMed  CAS  Google Scholar 

  • Kurtz A (1989) Cellular control of renin secretion. Rev Physiol Biochem Pharmacol 113: 1–40

    Article  PubMed  CAS  Google Scholar 

  • Kurtz A (1990) Do calcium-activated chloride channels control renin secretion? News Physiol Sci 5: 43–46

    CAS  Google Scholar 

  • Kurtz A (1991) Intracellular and membrane events in the activation of afferent arteriolar and granular cells. In: Hatano M (ed) Nephrology. Springer, Berlin Heidelberg New York, pp 323–337

    Google Scholar 

  • Kurtz A, Penner R (1989) Angiotensin II induces oscillations of intracellular calcium and inhibits inward rectifying potassium current in renal juxtaglomerular cells. Proc Natl Acad Sci USA 86: 3423–3427

    Article  PubMed  CAS  Google Scholar 

  • Kurtz A, Della Bruna R, Scholz H, Baier W (1991) Amiloride enhances the secretion but not the synthesis of renin in renal juxtaglomerular cells. Pflügers Arch Eur J Physiol 418: 31–37

    Google Scholar 

  • Lau KR, Case RM (1988) Evidence for apical chloride channels in rabbit submandibular salivary glands. A chloride-selective microelectrode study. Pflügers Arch Eur J Physiol 411: 670–675

    Article  CAS  Google Scholar 

  • Litosch I, Wallis C, Fain JN (1985) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. J Biol Chem 260: 5464–5471

    PubMed  CAS  Google Scholar 

  • Lopez-Barneo J, Armstrong CM (1983) Depolarizing response of rat parathyroid cells to divalent cations. J Gen Physiol 82: 269–294

    Article  PubMed  CAS  Google Scholar 

  • Luini A, Brown DA (1990) Effects of corticotrophin releasing factor, muscarine and somatostatin on rubidium and potassium efflux from mouse AtT-20 pituitary cells. Eur J Neurosci 2: 126–131

    Article  PubMed  Google Scholar 

  • Lundberg A (1958) Electrophysiology of salivary glands. Physiol Rev 38: 21–40

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Hokfelt T (1983) Coexistence of peptides and classical neurotransmitters. Trends Neurosci 6: 325–333

    Article  CAS  Google Scholar 

  • Martin K, Burgen ASV (1962) Changes in the premeability of the salivary gland caused by sympathetic stimulation and by catecholamines. J Gen Physiol 48: 113–138

    Google Scholar 

  • Marty A (1987) Control of ionic currents and fluid secretion by muscarinic agonists in exocrine glands. Trends Neurosci 10: 373–377

    Article  CAS  Google Scholar 

  • Marty A, Evans MG, Tan YP, Trautmann A (1986) Muscarine response in rat lacrimal glands. J Exp Biol 124: 15–32

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Petersen OH (1984a) Calcium activated potassium channels and their role in secretion. Nature 307: 693–696

    Article  PubMed  Google Scholar 

  • Maruyama Y, Petersen OH (1984b) Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature 299: 159–161

    Article  Google Scholar 

  • Mazariegos MR, Tice LW, Hand AR (1984) Alteration of tight junctional permeability in the rat parotid gland after isoproterenol stimulation. J Cell Biol 98: 1865–1877

    Article  PubMed  CAS  Google Scholar 

  • Meda P, Findlay I, Kolod E, Orci L, Petersen OH (1983) Short and reversible uncoupling evokes little change in the gap junctions of pancreatic acinar cells. J Ultrastruct Res 83: 69–84

    Article  PubMed  CAS  Google Scholar 

  • Monck JR, Oberhauser AF, Alvarez de Toledo G, Fernandez JM (1991) Is swelling of the secretory granule matrix the force that dilates the exocytic fusion pore. Biophys J 59: 39–47

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Greer SE, Opsahl Z, Greer MA (1986) Effect of osmotic change on insulin secretion by perifused rat pancreatic islets. Program 68th Annu Meet Endocrine Soc, Anaheim CA, p 289 (Abstr) Nauntofte B, Dissing S (1988) K+ transport and membrane potentials in isolated rat parotid acini. Am J Physiol 255: C508–C518

    Google Scholar 

  • Nemeth EF, Scarpa A (1987) Rapid mobilization of cellular Ca2+ in bovine parathyroid cells by external divalent cations. J Biol Chem 202: 5188–5196

    Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction. Nature 308: 693–698

    Article  PubMed  CAS  Google Scholar 

  • Oetting M, Leboff MS, Levy S, Swiston L, Preston J, Chen C, Brown EM (1987) Permeabilization reveals classical stimulus-secretion coupling in bovine parathyroid cells. Endocrinology 121: 1571–1576

    Article  PubMed  CAS  Google Scholar 

  • Owen N (1984) Regulation of Na/K/Cl cotransport in vascular smooth muscle cells. Biochem Biophys Res Commun 125: 500–508

    Article  PubMed  CAS  Google Scholar 

  • Pace CS, Smith JS (1983) The role of chemiosmotic lysis in the exocytotic release of insulin. Endocrinology 113: 964–969

    Article  PubMed  CAS  Google Scholar 

  • Penner R (1988) Multiple signaling pathways control stimulus-secretion coupling in rat peritoneal mast cells. Proc Natl Acad Sci USA 85: 9856–9860

    Article  PubMed  CAS  Google Scholar 

  • Penner R, Neher E (1988) The role of calcium in stimulus-secretion coupling in excitable and non-excitable cells. J Exp Biol 139: 329–345

    PubMed  CAS  Google Scholar 

  • Penner R, Matthews G, Neher E (1988) Regulation of calcium influx by second messengers in rat mast cells. Nature 334: 499–504

    Article  PubMed  CAS  Google Scholar 

  • Peterson OH (1980) The electrophysiology of gland cells. Academic Press, New York

    Google Scholar 

  • Petersen OH (1986) Potassium channels and fluid secretion. News Physiol Sci 1: 92–95

    Google Scholar 

  • Petersen OH, Findlay I (1987) Electrophysiology of the pancreas. Physiol Rev 67:1054–1120

    PubMed  CAS  Google Scholar 

  • Petersen OH, Gallacher DV (1988) Electrophysiology of pancreatic and salivary acinar cells. Annu Rev Physiol 50: 65–80

    Article  PubMed  CAS  Google Scholar 

  • Pollard HB, Pazoles CJ, Creutz CE, Zinder O (1979) The chromaffin granule and possible mechanisms of exocytosis. Int Rev Cytol 58: 159–197

    Article  PubMed  CAS  Google Scholar 

  • Pollard HB, Pazoles CJ, Creutz CE, Scott JH, Zinder O, Hotchkiss A (1984) An osmotic mechanism for exocytosis from dissociated chromaffin cells. J Biol Chem 259: 1114—1121

    PubMed  CAS  Google Scholar 

  • Pralong WF, Wöllheim CB, Bruzzone R (1988) Measurement of cytosolic free Ca2+ in individual pancreatic acini. FEBS Lett 242: 79–84

    Article  PubMed  CAS  Google Scholar 

  • Rapp PE, Berridge MJ (1981) The control of transepithelial potential oscillations in the salivary gland of calliphora erythricephala. J Exp Biol 93: 119–132

    CAS  Google Scholar 

  • Rasmussen H, Barrett PQ (1984) Calcium messenger system: an integrated view. Physiol Rev 64: 938–984

    PubMed  CAS  Google Scholar 

  • Rink TJ, Jacob R (1989) Calcium oscillations in non-excitable cells. Trends Neurosci 12: 43–46

    Article  PubMed  CAS  Google Scholar 

  • Rubin RP (1982) Calcium and cellular secretion. Plenum Press, New York

    Google Scholar 

  • Stao N, Wang X, Greer MA (1990a) Hypoosmolarity stimulates exocytosis from human polymorphonuclear leukocytes. Am J Med Sci 289: 309–312

    Article  Google Scholar 

  • Sato N, Wang X, Greer MA, Greer SE, McAdams S, Oshima T (1990b) Medium hypoosmolarity stimulates prolactin secretion in GH4Q cells by inducing an increase in cytosolic free calcium. Endocrinology 127: 957–964

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Wang X, Greer MA (1991) Hormone secretion stimulated by ethanol-induced cell swelling in normal rat adenohypophysial cells. Am J Physiol 260: E946–E950

    PubMed  CAS  Google Scholar 

  • Selinger Z, Batzri S, Eimerl S, Schramm M (1973) Calcium and energy requirements for K+ release mediated by the epinephrine a-receptor in rat parotid slices. J Biol Chem 248: 369–372

    PubMed  CAS  Google Scholar 

  • Sigmon DH, Fray JCS (1991) Chemiosmotic control of renin release from isolated rennin granules of rat kidneys. J Physiol 436: 237–256

    PubMed  CAS  Google Scholar 

  • Skott O (1988) Do osmotic forces play a role in renin secretion? Am J Physiol 255: F1–F10

    PubMed  CAS  Google Scholar 

  • Skott O, Jensen BL (1989) Influence of bicarbonate on the sensitivity of renin release to sodium chloride. Pflügers Arch Eur J Physiol 414: 651–655

    Article  CAS  Google Scholar 

  • Skott O, Taugner R (1987) Effects of extracellular osmolality on renin release and on the ultrastructure of the juxtaglomerular epitheloid cell granules. Cell Tissue Res 249: 325–329

    Article  PubMed  CAS  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schuiz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5- triphosphate. Nature 306: 67–69

    Article  PubMed  CAS  Google Scholar 

  • Taugner R, Bührle CP, Hackenthal E, Mannek E, Nobiling R (1984) Morphology of the juxtaglomerular apparatus and secretory mechanisms. Contrib Nephrol 43: 76–101

    PubMed  CAS  Google Scholar 

  • Turner RJ, George NJ, Baum BJ (1986) Evidence for a Na+/K+/Cr cotransport system in basolateral membrane vesicles from the rabbit parotid. J Membr Biol 94: 143–152

    Article  PubMed  CAS  Google Scholar 

  • Wakui M, Potter BVL, Petersen OH (1989) Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature 339: 317–320

    Article  PubMed  CAS  Google Scholar 

  • Wakui M, Osipchuk YV, Petersen OH (1990) Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca induced Ca2+ release. Cell 63: 1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Matsuba H, Uchiyama Y (1988) Correlation of 24-hour fluctuations in rennin granules of juxtaglomerular cells and in renin and angiotensinogen in blood plasma of the rat. Cell Tissue Res 254: 593–598

    PubMed  CAS  Google Scholar 

  • Wong SME, Chase HS Jr (1986) Role of intracellular calcium in cell volume regulation. Am J Physiol 250: C841–C852

    PubMed  CAS  Google Scholar 

  • Yanagimachi R, Usui N (1974) Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp Cell Res 89: 161–174

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg J, Whitaker M (1985) Irreversible swelling of secretory granules during exocytosis caused by calcium. Nature 315: 581–584

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg J, Curran M, Cohen FS, Brodwick M (1987) Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc Natl Acad Sci USA 84: 1585–1589

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurtz, A., Scholz, H. (1993). Cell Volume and Stimulus-Secretion Coupling. In: Lang, F., Häussinger, D. (eds) Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77124-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77124-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77126-2

  • Online ISBN: 978-3-642-77124-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics