Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 14))

Abstract

Most cell membranes are highly permeable to water. Movement of water across the cell membranes is driven by an osmotic and hydrostatic pressure gradient. Animal cells are not able to withstand significant hydrostatic pressure gradients. Thus, any osmotic gradient across the cell membrane will lead to the respective movements of water and alterations of cell volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adorante JS, Miller SS (1990) Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na, K, Cl cotransport. J Gen Physiol 96: 1153–1176

    Article  PubMed  CAS  Google Scholar 

  • Adragna NC, Tosteson DC (1984) Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells. J Membr Biol 78: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Bagnasco S, Balaban R, Fales HM, Yang Y-M, Burg M (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261: 5872–5877

    PubMed  CAS  Google Scholar 

  • Bakker-Grunwald T (1981) Hormone-induced diuretic-sensitive potassium transport in turkey erythrocytes is anion dependent. Biochim Biophys Acta 641: 427–431

    Article  PubMed  CAS  Google Scholar 

  • Bakker-Grunwald T, (1983) Potassium permeability and volume control in isolated rat hepatocytes. Biochim Biophys Acta 731: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Bakker-Grunwald T, Ogden P, Lamb JF (1982) Effects of ouabain and osmolarity on bumetanide-sensitive potassium transport in simian virus-transformed 3T3 cells. Biochim Biophys Acta 687: 333–336

    Article  PubMed  CAS  Google Scholar 

  • Balaban RS, Burg MB (1987) Osmotically active organic solutes in the renal inner medulla. Kidney Int 31: 562–564

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Grafe P (1985) An intracellular analysis of F-aminobutyric-acid-associated ion movements in rat sympathetic neurones. J Physiol 365: 41–58

    PubMed  CAS  Google Scholar 

  • Ballanyi K, Grafe P (1988) Cell volume regulation in the nervous system. Renal Physiol Biochem 11: 142–157

    PubMed  CAS  Google Scholar 

  • Ballanyi K, Serve G, Grafe P, Schlue W-R (1988) Electrophysiological measurements of K+-induced volume change in leech glial cells (Abstract). Pflügers Arch Eur J Physiol 411 (Suppl 1): R161, 310

    Google Scholar 

  • Baquet A, Hue L, Meijer AJ, van Woerkom GM, Plomp PJAM (1990) Swelling of rat hepatocytes stimulates glycogen synthesis. J Biol Chem 265: 955–959

    PubMed  CAS  Google Scholar 

  • Beck F-X, Guder W (1990) Cell osmoregulation in the counter current system of the renal medulla. Comp Physiol 4: 132–158

    Google Scholar 

  • Beck F-X, Potts DJ (1990) Cell swelling, co-transport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules. J Physiol 425: 369– 378

    PubMed  CAS  Google Scholar 

  • Beck F, Dörge, A, Rick R, Thurau K (1985) Osmoregulation of renal papillary cells. Pflügers Arch Eur J Physiol 405: S28–S32

    Article  Google Scholar 

  • Beck, F-X, Dörge A, Thurau K (1988a) Cellular osmoregulation in renal medulla. Renal Physiol Biochem 11: 174–186

    PubMed  CAS  Google Scholar 

  • Beck F-X, Dörge A, Rick R, Schramm M, Thurau K (1988b) The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effect of acute metabolic alkalosis. Pflügers Arch Eur J Physiol 411: 259–267

    Article  CAS  Google Scholar 

  • Beebe DC, Parmelee JT, Belcher KS (1990) Volume regulation in lens epithelial cells and differentiating lens fiber cells. J Cell Physiol 143: 455–459

    Article  PubMed  CAS  Google Scholar 

  • Bevan C, Theiss C, Kinne RK (1990) The role of Ca2+ in sorbitol release from rat inner medullary collecting duct cells under hypoosmotic stress. Biochem Biophys Res Commun 170: 563–568

    Article  PubMed  CAS  Google Scholar 

  • Biagi B, Kubota T, Sohtell M, Giebisch G (1981a) Intracellular potentials in rabbit proximal tubules perfused in vitro. Am J Physiol 240: F200–F210

    PubMed  CAS  Google Scholar 

  • Biagi B, Sohtell M, Giebisch G (1981b) Intracellular potassium activity in the rabbit proximal straight tubule. Am J Physiol 241: F677–F686

    PubMed  CAS  Google Scholar 

  • Blumenfeld JD, Hebert SC, Heilig, CW, Balschi JA, Stromski ME, Gullans SR (1989) Organic osmolytes in inner medulla of Brattleboro rat: effects of ADH and dehydration. Am J Physiol 256: F916–F922

    PubMed  CAS  Google Scholar 

  • Bonanno JA (1991) K+-H+ exchange, a fundamental cell acidifier in corneal epithelium. Am J Physiol 260: C618–C625

    PubMed  CAS  Google Scholar 

  • Brown CDA, Simmons NL (1981) Catecholamine-stimulation of Cl-secretion in MDCK cell epithelium. Biochim Biophys Acta 649: 427–435

    Article  PubMed  CAS  Google Scholar 

  • Butt AG, Clapp WL, Frizzell RA (1990) Potassium conductance in tracheal epithelium activated by secretion and cell swelling. Am J Physiol 258: C630–C638

    PubMed  CAS  Google Scholar 

  • Cala PM (1977) Volume regulation by flounder red blood cells in anisotonic media. J Gen Physiol 69: 537–552

    Article  PubMed  CAS  Google Scholar 

  • Cala PM, (1980) Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol 76: 683–708

    Article  PubMed  CAS  Google Scholar 

  • Cala PM (1983) Cell volume regulation by Amphiuma red blood cells. The role of Ca2+ as a modulator of alkali metal/H+ exchange. J Gen Physiol 82: 761–784

    Article  PubMed  CAS  Google Scholar 

  • Cala PM (1985) Volume regulation by Amphiuma red blood cells: characteristics of volume-sensitive K/H and Na/H exchange. Mol Physiol 8: 199–214

    CAS  Google Scholar 

  • Cala PM, Mandel LJ, Murphy E (1986) Volume regulation by Amphiuma red blood cells: cytosolic free Ca and alkali metal-H exchange. Am J Physiol 250: C423–C429

    PubMed  CAS  Google Scholar 

  • Cardinal J, Lapointe J-Y, Laprade R (1984) Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule. Am J Physiol 247: F352–F364

    PubMed  CAS  Google Scholar 

  • Cassola AC, Mollenhauer M, Frömter E (1983) The intracellular chloride activity of rat kidney proximal tubular cells. Pfliigers Arch Eur J Physiol 399: 259–265

    Article  CAS  Google Scholar 

  • Cemerikic D, Wilcox CS, Giebisch G (1982) Intracellular potential and K+ activity in rat kidney proximal tubular cells in acidosis and K+ depletion. J Membr Biol 69: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin ME, Strange K (1989) Anisosmotic cell volume regulation: a comparative view. Am J Physiol 257: C159–C173

    PubMed  CAS  Google Scholar 

  • Chassande O, Frelin C, Farahifar D, Jean T, Lazdunski M (1988) The Na+/K+/Cl cotransport in C6 glioma cells. Properties and role in volume regulation. Eur J Biochem 171: 425–433

    Article  PubMed  CAS  Google Scholar 

  • Cheung RK, Grinstein S, Dosch H-M, Gelfand EW (1982) Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease. J Cell Physiol 112: 189–196

    Article  PubMed  CAS  Google Scholar 

  • Christensen O (1987) Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Christensen O, Zeuthen T (1987) Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential. Pflugers Arch Eur J Physiol 408: 249–259

    Article  CAS  Google Scholar 

  • Christensen O, Simon M, Randlev T (1989) Anion channels in a leaky epithelium. A patch clamp study of choroid plexus. Pflügers Arch Eur J Physiol 415: 37–46

    Article  CAS  Google Scholar 

  • Costa PM, Fernandes PL, Ferreira HG, Ferreira KT, Giraldez F (1987) Effect of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda). J Physiol 393: 1–17

    PubMed  CAS  Google Scholar 

  • Davis CW, Finn AL (1985) Cell volume regulation in frog urinary bladder. Fed Proc 44: 2520–2525

    PubMed  CAS  Google Scholar 

  • Davis CW, Finn AL (1987) Interactions of sodium transport, cell volume, and calcium in frog urinary bladder. J Gen Physiol 89: 687–702

    Article  PubMed  CAS  Google Scholar 

  • Dellasega M, Grantham JJ (1973) Regulation of renal tubule cell volume in hypotonic media. Am J Physiol 224: 1288–1294

    PubMed  CAS  Google Scholar 

  • Deutsch C, Lee SC (1988) Cell volume regulation in lymphocytes. Renal Physiol Biochem 11: 260–276

    PubMed  CAS  Google Scholar 

  • Donaldson PJ, Chen LK, Lewis SA (1989) Effects of serosal anion composition on the permeability properties of rabbit urinary bladder. Am J Physiol 256: F1125–F1134

    PubMed  CAS  Google Scholar 

  • Drewnowska K, Baumgarten CM (1991) Regulation of cellular volume in rabbit ventricular myocytes: bumetanide, chlorothiazide, and ouabain. Am J Physiol 260: C122–C131

    PubMed  CAS  Google Scholar 

  • Dube L, Parent L, Sauve R (1990) Hypotonic shock activates a maxi K+ channel in primary cultured proximal tubule cells. Am J Physiol 259: F348–F356

    PubMed  CAS  Google Scholar 

  • Duhm J, Gobel BO (1984) Na+-K+ transport and volume of rat erythrocytes under dietary K+ deficiency. Am J Physiol 246: C20–C29

    PubMed  CAS  Google Scholar 

  • Dunham PB, Ellory JC (1981) Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride. J Physiol 318: 511–530

    PubMed  CAS  Google Scholar 

  • Edelman A, Curci S, Samarzija I, Fromter E (1978) Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflügers Arch Eur J Physiol 378: 37–45

    Article  CAS  Google Scholar 

  • Ellory JC, Hall AC, Stewart GW (1985) Volume-sensitive cation fluxes in mammalian red cells. Mol Physiol 8: 235–246

    CAS  Google Scholar 

  • Ericson A-C, Spring KR (1982) Volume regulation by Necturus gallbladder apical Na+-H+ and C1-HCO3 exchange. Am J Physiol 243: C146–C150

    PubMed  CAS  Google Scholar 

  • Eveloff JL, Calamia J (1986) Effect of osmolarity on cation fluxes in medullary thick ascending limb cells. Am J Physiol 250: F176–F180

    PubMed  CAS  Google Scholar 

  • Falke LC, Misler S (1989) Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells. Proc Natl Acad Sci USA 86: 3919–3923

    Article  PubMed  CAS  Google Scholar 

  • Farahbakhsh NA, Fain, GL (1987) Volume regulation of nonpigmented cells from ciliary epithelium. Invest Ophthalmol Visual Sci 28: 934–944

    CAS  Google Scholar 

  • Filipovic D, Sackin H (1991) A calcium-permeable stretch-activated cation channel in renal proximal tubule. Am J Physiol 260: F119–F129

    PubMed  CAS  Google Scholar 

  • Fincham DA, Wolowyk MW, Young JD (1987) Volume-sensitive taurine transport in fish erythrocytes. J Membr Biol 96: 45–56

    Article  PubMed  CAS  Google Scholar 

  • Finn AL, Reuss L (1975) Effects of changes in the ionic composition of the serosal solution on the electrical properties of the toad urinary bladder epithelium. J Physiol 250: 541–558

    PubMed  CAS  Google Scholar 

  • Fisher RS, Persson BE, Spring KR (1981) Epithelial cell volume regulation: bicarbonate dependence. Science 214: 1357–1359

    Article  PubMed  CAS  Google Scholar 

  • Forster RP, Goldstein L (1979) Amino acids and cell volume regulation. Yale J Biol Med 52: 497–515

    PubMed  CAS  Google Scholar 

  • Frelin C, Chassande O, Lazdunski M (1986) Biochemical characterization of the Na+/K+/ Cl co-transport in chick cardiac cells. Biochem Biophys Res Commun 134: 326–331

    Article  PubMed  CAS  Google Scholar 

  • Frömter E (1979) Solute transport across epithelia: what can we learn from micropuncture studies on kidney tubules? J Physiol 288: 1–31

    PubMed  Google Scholar 

  • Frömter E (1982) Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomena. Pflügers Arch Eur J Physiol 393: 179–189

    Article  Google Scholar 

  • Frömter E (1984) Viewing the kidney through microelectrodes. Am J Physiol 247: F695–F705

    PubMed  Google Scholar 

  • Fugelli K, Rohrs H (1980) The effect of Na+ and osmolality on the influx and steady state distribution of taurine and gamma-aminobutyric acid in flounder (Platichthys flesus) erythrocytes. Comp Biochem Physiol 67A: 545–551

    Article  CAS  Google Scholar 

  • Gagnon J, Ouimet D, Nguyen H, Laprade R, Le Grimellec C, Carriere S, Cardinal J (1982) Cell volume regulation in the proximal convoluted tubule. Am J Physiol 243: F408–F415

    PubMed  CAS  Google Scholar 

  • Garcia-Perez A, Burg MB (1990) Importance of organic osmolytes for osmoregulation by renal medullary cells. Hypertension 16: 595–602

    PubMed  CAS  Google Scholar 

  • Garcia-Perez A, Burg MB (1991) Role of organic osmolytes in adaptation of renal cells to high osmolality. J Membr Biol 119: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Garty H, Furlong, TJ, Ellis DE, Spring KR (1991) Sorbitol permease: an apical membrane transporter in cultured renal papillary epithelial cells. Am J Physiol 260: F650–F656

    PubMed  CAS  Google Scholar 

  • Geek P (1990) Volume regulation in Ehrlich ascites tumor cells. Comp Physiol 4: 26–58

    Google Scholar 

  • Geek P, Heinz E (1986) The Na-K-2C1 cotransport system. J Membr Biol 91: 97–105

    Article  Google Scholar 

  • Geek P, Pietrzyk C, Burckhardt B-C, Pfeiffer B, Heinz E (1980) Electrically silent cotransport of Na+, K+ and Cl in Ehrlich cells. Biochim Biophys Acta 600: 432–447

    Article  Google Scholar 

  • Germann WJ, Ernst SA, Dawson DC (1986) Resting and osmotically induced basolateral K conductances in turtle colon. J Gen Physiol 88: 253–274

    Article  PubMed  CAS  Google Scholar 

  • Gilles R (1987) Volume regulation in cells of euryhaline invertebrates. Curr Top Membr Transp 30: 205–247

    CAS  Google Scholar 

  • Gilles R (1988) Comparative aspects of cell osmoregulation and volume control. Renal Physiol Biochem 11: 277–288

    PubMed  CAS  Google Scholar 

  • Goldstein L, Kleinzeller A (1987) Cell volume regulation in lower vertebrates. Curr Top Membr Transp 30: 181–204

    CAS  Google Scholar 

  • Graf J, Haddad P, Häussinger D, Lang F (1988) Cell volume regulation in liver. Renal Physiol Biochem 11: 202–222

    PubMed  CAS  Google Scholar 

  • Green J, Yamaguchi DT, Kleeman CR, Muallem S (1988) Selective modification of the kinetic properties of Na+/H+ exchanger by cell shrinkage and swelling. J Biol Chem 263: 5012–5015

    PubMed  CAS  Google Scholar 

  • Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev 65: 760–797

    PubMed  CAS  Google Scholar 

  • Greger R, Oberleithner H, Schlatter E, Cassola AC, Weidtke C (1983) Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflügers Arch Eur J Physiol 399: 29–34

    Article  CAS  Google Scholar 

  • Greger R, Weidtke C, Schlatter E, Wittner M, Gebler B (1984) Potassium activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflügers Arch Eur J Physiol 401: 52–57

    Article  CAS  Google Scholar 

  • Grinstein S, Clarke CA, Rothstein A (1982a) Increased anion permeability during volume regulation in human lymphocytes. Philos Trans R Soc Lond B299: 509–518

    Article  Google Scholar 

  • Grinstein S, Dupre A, Rothstein A (1982b) Volume regulation by human lymphocytes. Role of calcium. J Gen Physiol 79: 849–868

    Article  PubMed  CAS  Google Scholar 

  • Grinstein S, Clarke CA, Dupre A, Rothstein A (1982c) Volume-induced increase of anion permeability in human lymphocytes. J Gen Physiol 80: 801–823

    Article  PubMed  CAS  Google Scholar 

  • Grinstein S, Clarke CA, Rothstein A, Gelfand EW (1983a) Volume-induced anion conductance in human B lymphocytes is cation independent. Am J Physiol 245: C160–C163

    PubMed  CAS  Google Scholar 

  • Grinstein S, Clarke CA, Rothstein A (1983b) Activation of Na+/H+ exchange in lymphocytes by osmotically induced volume changes and by cytoplasmic acidification. J Gen Physiol 82: 619–638

    Article  PubMed  CAS  Google Scholar 

  • Grinstein S, Rothstein A, Sarkadi B, Gelfand EW (1984) Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol 246: C204–C215

    PubMed  CAS  Google Scholar 

  • Grinstein S, Goetz JD, Cohen S, Furuya W, Rothstein A, Gelfand EW (1985a) Mechanism of regulatory volume increase in osmotically shrunken lymphocytes. Mol Physiol 8: 185–198

    CAS  Google Scholar 

  • Grinstein S, Rothstein A, Cohen S (1985b) Mechanism of osmotic activation of Na+/H+ exchange in rat thymic lymphocytes. J Gen Physiol 85: 765–787

    Article  PubMed  CAS  Google Scholar 

  • Guggino W, Oberleithner H, Giebisch G (1985) Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney. J Gen Physiol 86: 31–58

    Article  PubMed  CAS  Google Scholar 

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352: 685–701

    PubMed  CAS  Google Scholar 

  • Haberich FJ (1968) Osmoreception in the portal circulation. Fed Proc 27: 1137–1141

    PubMed  CAS  Google Scholar 

  • Häussinger D, Lang F (1990) Exposure of perfused liver to hypotonic conditions modifies cellular nitrogen metabolism. J Cell Biochem 43: 355–361

    Article  PubMed  Google Scholar 

  • Häussinger D, Lang F (1991a) The mutual interaction between cell volume and cell function: a new principle of metabolic regulation. Biochem Cell Biol 69: 1–4

    Article  PubMed  Google Scholar 

  • Häussinger D, Lang F (1991b) Regulation of liver cell function and cell volume: a new principle for metabolic control. Biochim Biophys Acta 1071: 331–350

    PubMed  Google Scholar 

  • Häussinger D, Lang F (1991c) Cell volume-a “second messenger” in the regulation of metabolism by amino acids and hormones. Cell Physiol Biochem 1: 121–130

    Article  Google Scholar 

  • Häussinger D, Lang F, Bauers K, Gerok W (1990a) Interactions between glutamine metabolism and cell volume regulation in perfused rat liver. Eur J Biochem 188: 689–695

    Article  PubMed  Google Scholar 

  • Häussinger D, Hallbrucker C, vom Dahl S, Lang F, Gerok W (1990b) Cell swelling inhibits proteolysis in perfused rat liver. Biochem J 272: 239–242

    PubMed  Google Scholar 

  • Häussinger D, Lang F, Bauers K, Gerok W (1990c) Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms. Eur J Biochem 193: 891–898

    Article  Google Scholar 

  • Häussinger D, Stehle T, Lang F (1990d) Volume regulation in liver: further characterization by inhibitors and ionic substitutions. Hepatology 11: 243–254

    Article  PubMed  Google Scholar 

  • Häzama A, Okada Y (1988) Ca2+ sensitivity of volume regulatory K+ and Cl channels in cultured human epithelial cells. J Physiol 402: 687–702

    PubMed  Google Scholar 

  • Hebert SC (1986) Hypertonic cell volume regulation in mouse thick limbs. II. Na+/H+ and Cr/HCCV exchange in basolateral membranes. Am J Physiol 250: C920–C931

    PubMed  CAS  Google Scholar 

  • Hermansson K, Spring KR (1986) Potassium induced changes in cell volume of gallbladder epithelium. Pflugers Arch Eur J Physiol 407: S90–S99

    Article  Google Scholar 

  • Hoffmann EK (1985a) Role of separate K+ and Cl” channels and of Na+/Cl cotransport in volume regulation in Ehrlich cells. Fed Proc 44: 2513–2519

    PubMed  CAS  Google Scholar 

  • Hoffmann EK (1985b) Regulatory volume decrease in Ehrlich ascites tumor cells: role of inorganic ions and amino compounds. Mol Physiol 8: 167–184

    CAS  Google Scholar 

  • Hoffman EK (1987) Volume regulation in cultured cells. Curr Top Membr Transp 30: 125–180

    Google Scholar 

  • Hoffmann EK, Hendil KB (1976) The role of amino acids and taurine in isosmotic intracellular regulation in Ehrlich ascites mouse tumour cells. J Comp Physiol 108: 279–286

    CAS  Google Scholar 

  • Hoffmann EK, Lambert IH (1983) Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. J Physiol 338: 613–625

    PubMed  CAS  Google Scholar 

  • Hoffmann, EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69: 315–382

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Sjoholm C, Simonsen LO (1983) Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase). J Membr Biol 76: 269–280

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann EK, Simonsen LO, Lambert IH (1984) Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. J Membr Biol 78: 211–222

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann EK, Lambert IH, Simonsen LO (1986) Separate, Ca2+-activated K+ and CT transport pathways in Ehrlich ascites tumor cells. J Membr Biol 91: 227–244

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann EK, Lambert IH, Simonsen LO (1988) Mechanisms in volume regulation in Ehrlich ascites tumor cells. Renal Physiol Biochem 11: 221–247

    PubMed  CAS  Google Scholar 

  • Howard LD, Wondergem R (1987) Effects of anisosmotic medium on cell volume, transmembrane potential and intracellular K+ activity in mouse hepatocytes. J Membr Biol 100: 53–61

    Article  PubMed  CAS  Google Scholar 

  • Hudson RL, Schultz SG (1988) Sodium-coupled glycine uptake by Ehrlich ascites tumor cells results in an increase in cell volume and plasma membrane channel activities. Proc Natl Acad Sci USA 85: 279–283

    Article  PubMed  CAS  Google Scholar 

  • Hunter M (1990) Stretch-activated channels in the basolateral membrane of single proximal cells of frog kidney. Pflügers Arch Eur J Physiol 416: 448–453

    Article  CAS  Google Scholar 

  • Jakubovicz DE, Grinstein S, Klip A (1987) Cell swelling following recovery from acidification in C6 glioma cells: an in vitro model of postischemic brain edema. Brain Res 435: 138–146

    CAS  Google Scholar 

  • Jennings ML, Douglas SM, McAndrew PE (1986) Amiloride-sensitive sodium-hydrogen exchange in osmotically shrunken rabbit red blood cells. Am J Physiol 251: C32–C40

    PubMed  CAS  Google Scholar 

  • Kempski O, Staub F, Jansen M, Schodel F, Baethmann A (1988) Glial swelling during extracellular acidosis in vitro. Stroke 19: 385–392

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, Frangakis MV (1986) Volume regulation in primary astrocyte cultures. Adv Bio sci 61: 177–186

    Google Scholar 

  • Kimelberg HK, Kettenmann H (1990) Swelling induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes. I. Effects on membrane potentials, input impedance and cell-cell coupling. Brain Res 529: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, O’Connor ER (1988) Swelling-induced depolarization of astrocyte potentials. Glia 1: 219–224

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990a) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10: 1583–1591

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Anderson E, Kettenmann H (1990b) Swelling induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes. II. Whole cell currents. Brain Res 529: 262–268

    Article  PubMed  CAS  Google Scholar 

  • King PA, Goldstein L (1983) Organic osmolytes and cell volume regulation in fish. Mol Physiol 4: 53–66

    CAS  Google Scholar 

  • Kirk KL, DiBona DR, Schafer JA (1987a) Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of cell K+. Am J Physiol 252: F933–F942

    PubMed  CAS  Google Scholar 

  • Kirk KL, Schafer JA, DiBona DR (1987b) Cell volume regulation in rabbit proximal straight tubule perfused in vitro. Am J Physiol 252: F922–F932

    PubMed  CAS  Google Scholar 

  • Kleinzeller A, Ziyedeh FN (1990) Volume regulation in epithelia: emphasis on the role of osmolytes and the cytoskeleton. Comp Physiol 4: 59–86

    Google Scholar 

  • Koch Jensen P, Fisher RS, Spring KR (1984) Feedback inhibition of NaCl entry in Necturus gallbladder epithelial cells. J Membr Biol 82: 95–104

    Article  Google Scholar 

  • Kramhoft B, Lambert IH, Hoffmann EK, Jorgensen F (1986) Activation of Cl-dependent K transport in Ehrlich ascites tumor cells. Am J Physiol 251: C369–C379

    PubMed  CAS  Google Scholar 

  • Kregenow FM (1971) The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol 58: 372–395

    Article  PubMed  CAS  Google Scholar 

  • Kregenow FM (1981) Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu Rev Physiol 43: 493–505

    Article  PubMed  CAS  Google Scholar 

  • Kregenow FM, Caryk T, Siebens AW (1985) Further studies of the volume-regulatory response of Amphiuma red cells in hypertonic media. Evidence for amiloride-sensitive Na/H exchange. J Gen Physiol 86: 565–584

    Article  PubMed  CAS  Google Scholar 

  • Kristensen LO (1986) Associations between transports of alanine and cations across cell membrane in rat hepatocytes. Am J Physiol 251: G575–G584

    PubMed  CAS  Google Scholar 

  • Kristensen LO, Folke, M (1984) Volume-regulatory K+ efflux during concentrative uptake of alanine in isolated rat hepatocytes. Biochem J 221: 265–268

    PubMed  CAS  Google Scholar 

  • Kullberg R (1987) Stretch-activated ion channels in bacteria and animal cell membranes. TINS 10: 38–39

    Google Scholar 

  • Lambert IH, Hoffman EK, Jorgensen F (1989) Membrane potential, anion and cation conductances in Ehrlich ascites tumor cells. J Membr Biol 111: 113–132

    Article  PubMed  CAS  Google Scholar 

  • Lang F (1988) NaCl transport in the kidney. In: Greger R (ed) Advances in comparative and environmental physiology, vol 1. Springer, Berlin Heidelberg New York, pp 153–188

    Google Scholar 

  • Lang F, Rehwald W (1992) Potassium channels in renal epithelial transport regulation. Physiol Rev 20: 1–39

    Google Scholar 

  • Lang F, Messner G, Wang W, Oberleithner H (1983) Interaction of intracellular electrolytes and tubular transport. Klin Wochenschr 61: 1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Messner G, Wang W, Paulmichl M, Oberleithner H, Deetjen P (1984) The influence of intracellular sodium activity on the transport of glucose in proximal tubule of frog kidney. Pflügers Arch Eur J Physiol 401: 14–21

    Article  CAS  Google Scholar 

  • Lang F, Messner G, Rehwald W (1986a) Electrophysiology of sodium-coupled transport in proximal renal tubules. Am J Physiol 250: F953–F962

    PubMed  CAS  Google Scholar 

  • Lang F, Defregger M, Paulmichl M (1986b) Apparent chloride conductance of subconfluent Madin Darby canine kidney cells. Pflügers Arch Eur J Physiol 407: 158–162

    Article  CAS  Google Scholar 

  • Lang F, Paulmichl M, Völkl H, Gstrein E, Friedrich F (1987) Electrophysiology of cell volume regulation. In: Kovacevic Z, Guder WG (eds) Molecular physiology: biochemical aspects of kidney function, de Gruyter, Berlin, pp 133–139

    Google Scholar 

  • Lang F, Oberleithner H, Kolb HA, Paulmichl M, Völkl H, Wang W (1988) Interaction of intracellular pH and cell membrane potential. In: Häussinger D (ed) pH homeostasis. Academic Press, New York, pp 27–42

    Google Scholar 

  • Lang F, Stehle T, Häussinger D (1989) Water, K+, H+, lactate and glucose fluxes during cell volume regulation in perfused rat liver. Pflügers Arch Eur J Physiol 413: 209–216

    Article  CAS  Google Scholar 

  • Lang F, Friedrich F, Paulmichl M, Schobersberger W, Jungwirth A, Ritter M, Steidl M, Weiss H, W611 E, Tschernko E, Paulmichl R, Hallbrucker C (1990) Ion channels in Madin-Darby canine kidney cells. Renal Physiol Biochem 13: 82–93

    PubMed  CAS  Google Scholar 

  • Lang F, Ritter M, Wö11 E, Weiss H, Häussinger D, Maly K, Grunicke H (1992) Altered cell volume regulation in ras oncogene expressing NIH fibroblasts. Pfliigers Arch Eur J Physiol (in press)

    Google Scholar 

  • Lapointe JY, Garneau L, Bell PD, Cardinal J (1990) Membrane crosstalk in the proximal tubule during alterations in transepithelial sodium transport. Am J Physiol 258: F339–F345

    PubMed  CAS  Google Scholar 

  • Larson M, Spring KR (1984) Volume regulation by Necturus gallbladder: basolateral KC1 exit. J Membr Biol 81: 219–232

    Article  PubMed  CAS  Google Scholar 

  • Lau KR, Hudson RL, Schultz SG (1984) Cell swelling increases a barium-inhibitablep otassium conductance in the basolateral membrane of Necturus small intestine. Proc Natl Acad Sci USA 81: 3591–3594

    Article  PubMed  CAS  Google Scholar 

  • Lauf PK (1982) Evidence for chloride dependent potassium and water transport induced by hyposmotic stress in erythrocytes of the marine teleost, Opsanus tau. J Comp Physiol 146: 9–16

    CAS  Google Scholar 

  • Lauf PK (1985) On the relationship between volume- and thiol-stimulated K+ Cl fluxes in red cell membranes. Mol Physiol 8: 215–234

    CAS  Google Scholar 

  • Lauf PK (1988) K:C1 cotransport: emerging molecular aspects of a ouabain-resistant, volume-responsive transport system in red blood cells. Renal Physiol Biochem 11: 248–259

    PubMed  CAS  Google Scholar 

  • Law RO, Burg MB (1991) The role of osmolytes in the regulation of mammalian cell volume. Adv Comp Environ Physiol 9: 189–225

    Article  Google Scholar 

  • Law RO, Turner DPJ (1987) Are ninhydrin-positive substances volume-regulatory osmolytes in rat renal papillary cells? J Physiol 386: 45–61

    PubMed  CAS  Google Scholar 

  • Lee CO, Taylor A, Windhager EE (1980) Cytosolic calcium ion activity in epithelial cells of Necturus kidney. Nature 287: 859–861

    Article  PubMed  CAS  Google Scholar 

  • Leibowich S, DeLong J, Civan MM (1988) Apical Na+ permeability of frog skin during serosal Cl” replacement. J Membr Biol 102: 121–130

    Article  PubMed  CAS  Google Scholar 

  • Lewis SA, Butt AG, Bowler MJ, Leader JP, Macknight ADC (1985) Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder. J Membr Biol 83: 119–137

    Article  PubMed  CAS  Google Scholar 

  • Lifschitz MD (1986) Prostaglandins may mediate chloride concentration gradient across domes formed by MDCK1 cells. Am J Physiol 250: F525–F531

    PubMed  CAS  Google Scholar 

  • Linshaw MA (1980) Effect of metabolic inhibitors on renal tubule cell volume. Am J Physiol 239: F571–F577

    PubMed  CAS  Google Scholar 

  • Linshaw MA, Grantham JJ (1980) Effect of collagenase and ouabain on renal cell volume in hypotonic media. Am J Physiol 238: F491–F498

    PubMed  CAS  Google Scholar 

  • Lipton P (1972) Effect of changes in osmolarity on sodium transport across the isolated toad bladder. Am J Physiol 222: 821–828

    PubMed  CAS  Google Scholar 

  • Livne A, Grinstein S, Rothstein A (1987) Volume-regulating behavior of human platelets. J Cell Physiol 131: 354–363

    Article  PubMed  CAS  Google Scholar 

  • Lohr JW, Sullivan LP, Cragoe EJ, Grantham JJ (1989) Volume regulation determinants in isolated proximal tubules in hypertonic medium. Am J Physiol 256: F622–F631

    PubMed  CAS  Google Scholar 

  • Lopes AG, Guggino WB (1987) Volume regulation in the early proximal tubule of the Necturus kidney. J Membr Biol 97: 117–125

    Article  PubMed  CAS  Google Scholar 

  • Macknight ADC (1985) The role of anions in cellular volume regulation. Pfliigers Arch Eur J Physiol 405: S12–S16

    Article  CAS  Google Scholar 

  • Macknight ADC (1987) Volume maintenance in isosmotic conditions. Curr Top Membr Transp 30: 3–44

    Google Scholar 

  • Macknight ADC (1988) Principles of cell volume regulation. Renal Physiol Biochem 11: 114–141

    PubMed  CAS  Google Scholar 

  • Macknight ADC, Leaf A (1977) Regulation of cellular volume. Physiol Rev 57: 510–573

    PubMed  CAS  Google Scholar 

  • Macknight ADC, Scott RJ (1989) Effects of impermeant medium ions on the composition of rabbit renal cortical slices. Renal Physiol Biochem 12: 118–136

    PubMed  CAS  Google Scholar 

  • MacLeod RJ, Hamilton JR (1990) Regulatory volume increase in isolated mammalian jejunal villus is due to bumetanide-sensitive NaKC12 cotransport. Am J Physiol 258: G665–G674

    PubMed  CAS  Google Scholar 

  • McCann JD, Li M, Welsh MJ (1989) Identification and regulation of whole-cell chloride currents in airway epithelium. J Gen Physiol 94: 1015–1036

    Article  PubMed  CAS  Google Scholar 

  • McConnell F, Goldstein L (1990) Volume regulation in elasmobranch red blood cells. Comp Physiol 4: 114–131

    Google Scholar 

  • Mercer RW, Hoffman JF (1985) Bumetanide-sensitive Na/K cotransport in ferret red blood cells. (Abstract). Biophys J 47: 157a

    Google Scholar 

  • Meyer M, Maly K, Uberall F, Hoflacher J, Grunicke H (1991) Stimulation of K+ transport systems by Ha-ras. J Biol Chem 266: 8230–8235

    PubMed  CAS  Google Scholar 

  • Mills JW (1987) The cell cytoskeleton: possible role in volume control. Curr Top Membr Transp 30: 75–101

    Google Scholar 

  • Mills JW, Lubin M (1986) Effect of adenosine 3’,5’-cyclic monophosphate on volume and cytoskeleton of MDCK cells. Am J Physiol 250: C319–C324

    PubMed  CAS  Google Scholar 

  • Mills JW, Skiest DL (1985) Role of cyclic AMP and the cytoskeleton in volume control in MDCK cells. Mol Physiol 8: 247–262

    CAS  Google Scholar 

  • Montero MC, Ilundain A (1989) Effects of anisosmotic buffers on K+ transport in isolated chicken enterocytes. Biochim Biophys Acta 979: 269–271

    Article  PubMed  CAS  Google Scholar 

  • Montrose MH, Knoblauch C, Murer H (1988) Separate control of regulatory volume increase and Na+-H+ exchange by cultured renal cells. Am J Physiol 255: C76– C85

    PubMed  CAS  Google Scholar 

  • Montrose-Rafizadeh C, Guggino WB (1990) Cell volume regulation in the nephron. Annu Rev Physiol 52: 761–772

    Article  PubMed  CAS  Google Scholar 

  • Moriyama T, Carcia-Perez A, Burg MB (1990) Factors affecting the ratio of different organic osmolytes in renal medullary cells. Am J Physiol 259: F847–F858

    PubMed  CAS  Google Scholar 

  • Muallem S, Loessberg PA (1990) Intracellular pH-regulatory mechanisms in pancreatic acinar cells. II. Regulation of H+ and HCO3 transporters by Ca2+-mobilizing agonists. J Biol Chem 265: 12813–12819

    PubMed  CAS  Google Scholar 

  • Musch MW, Field M (1989) K-independent Na-Cl cotransport in bovine tracheal epithelial cells. Am J Physiol 256: C658–C665

    PubMed  CAS  Google Scholar 

  • Natke E (1990) Cell volume regulation of rabbit cortical collecting tubule in anisotonic media. Am J Physiol 258: F1657–F1665

    PubMed  Google Scholar 

  • O’Neill WC (1987) Volume-sensitive Cl-dependent K transport in human erythrocytes. Am J Physiol 253: C883–C888

    PubMed  Google Scholar 

  • O’Neill WC, Klein JD (1992) Regulation of vascular endothelial cell volume by Na-K-2C1 cotransport. Am J Physiol (in press)

    Google Scholar 

  • O’Neill WC, Mikkelsen RB (1987) Furosemide-sensitive Na+ and K+ transport and human erythrocyte volume. Biochim Biophys Acta 896: 196–202

    Article  PubMed  Google Scholar 

  • Palmer LG, Sackin H (1988) Regulation of renal ion channels. FASEB J 2: 3061–3065

    PubMed  CAS  Google Scholar 

  • Parker JC (1978) Sodium and calcium movements in dog red blood cells. J Gen Physiol 71: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Parker JC (1979) Active and passive Ca movements in dog red blood cells and resealed ghosts. Am J Physiol 237: C10–C16

    PubMed  CAS  Google Scholar 

  • Parker JC (1983a) Hemolytic action of potassium salts on dog red blood cells. Am J Physiol 244: C313–C317

    PubMed  CAS  Google Scholar 

  • Parker JC (1983b) Volume-responsive sodium movements in dog red blood cells. Am J Physiol 244: C324–C330

    PubMed  CAS  Google Scholar 

  • Parker JC, Castranova V (1984) Volume-responsive sodium and proton movements in dog red blood cells. J Gen Physiol 84: 379–401

    Article  PubMed  CAS  Google Scholar 

  • Parker JC, Gitelman HJ, Glosson PS, Leonard DL (1975) Role of calcium in volume regulation by dog red blood cells. J Gen Physiol 65: 84–96

    Article  PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Schousboe A (1988) Volume regulation in astrocytes: a role for taurine as osmoeffector. J Neurosci Res 20: 505–509

    Article  CAS  Google Scholar 

  • Paulmichl M, Gstraunthaler G, Lang F (1985) Electrical properties of Madin-Darby canine kidney cells. Effects of extracellular potassium and bicarbonate. Pflügers Arch Eur J Physiol 405: 102–107

    Article  CAS  Google Scholar 

  • Paulmichl M, Friedrich F, Maly K, Lang F (1989) The effect of hypoosmolarity on the electrical properties of Madin-Darby canine kidney cells. Pflügers Arch Eur J Physiol 413: 456–462

    Article  CAS  Google Scholar 

  • Pine MB, Rhodes D, Thorp K, Tsai Y (1979) Anion exchange and volume regulation during metabolic blockade of renal cortical slices. J Physiol 297: 387–403

    PubMed  CAS  Google Scholar 

  • Pine MB, Brooks WW, Nosta JJ, Abelmann WH (1981) Hydrostatic forces limit swelling of rat ventricular myocardium. Am J Physiol 241: H740–H747

    PubMed  CAS  Google Scholar 

  • Pollack LR, Tate EM, Cook JS (1981) Turnover and regulation of Na, K-ATPase in HeLa cells. Am J Physiol 67: 537–552

    Google Scholar 

  • Pollock AS, Arieff AI (1980) Abnormalities of cell volume regulation and their functional consequences. Am J Physiol 239: F195–F205

    PubMed  CAS  Google Scholar 

  • Reuss L (1984) Independence of apical membrane Na+ and Cl entry in Necturus gallbladder epithelium. J Gen Physiol 84: 423–445

    Article  PubMed  CAS  Google Scholar 

  • Reuss L (1988) Cell volume regulation in non-renal epithelia. Renal Physiol Biochem 11: 187–201

    Google Scholar 

  • Ritter M, Paulmichl M, Lang F (1991a) Further characterization of volume regulatory decrease in cultured renal epitheloid (MDCK) cells. Pflügers Arch Eur J Physiol 418: 35–39

    Article  CAS  Google Scholar 

  • Ritter M, Steidl M, Lang F (1991b) Inhibition of ion conductances by osmotic shrinkage of Madin Darby canine kidney (MDCK-) cells. Am J Physiol 261: C602–C607

    PubMed  CAS  Google Scholar 

  • Rome L, Grantham J, Savin V, Lechene C (1988) Volume regulation in S2 segments: analysis of intracellular osmolal and anion gaps. Proceedings of the Annual Meeting of the American Society of Nephrology, San Antonio: 339A, 107, (Abstr)

    Google Scholar 

  • Rome L, Grantham J, Savin V, Lohr J, Lechene C (1989) Proximal tubule volume regulation in hyperosmotic media: intracellular K+, Na+, and Cl. Am J Physiol 257: C1093–C1100

    PubMed  CAS  Google Scholar 

  • Roy G, Sauve R (1987) Effect of anisotonic media on volume, ion and amino-acid content and membrane potential of kidney cells (MDCK) in culture. J Membr Biol 100: 83–96

    Article  PubMed  CAS  Google Scholar 

  • Rugolo M, Mastocola T, Flamigni A, Lenaz G (1989) Chloride transport in human fibroblasts is activated by hypotonic shock. Biochem Biophys Res Commun 160: 1330–1338

    Article  PubMed  CAS  Google Scholar 

  • Russo MA, Ernst SA, Kapoor SC, van Rossum GDV (1985) Morphological and physiological studies of rat kidney cortex slices undergoing isosmotic swelling and its reversal: a possible mechanism for ouabain-resistant control of cell volume. J Membr Biol 85: 1–24

    Article  PubMed  CAS  Google Scholar 

  • Sackin H (1987) Stretch-activated potassium channels in renal proximal tubule. Am J Physiol 253: F1253–F1262

    PubMed  CAS  Google Scholar 

  • Sackin H (1989) A stretch-activated K+ channel sensitive to cell volume. Proc Natl Acad Sci USA 86: 1731–1735

    Article  PubMed  CAS  Google Scholar 

  • Sackin H, Palmer LG (1987) Basolateral potassium channels in renal proximal tubule. Am J Physiol 253: F476–F487

    PubMed  CAS  Google Scholar 

  • Sanchez Olea R, Pasantes-Morales H, Lazaro A, Cereijido M (1991) Osmolarity-sensitive release of free amino acids from cultured kidney cells (MDCK). J Membr Biol 121: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Sarkadi B, Mack E, Rothstein A (1984a) Ionic events during the volume response of human peripheral blood lymphocytes to hyotonic media. I. Distinctions between volume-activated Cl and K+ conductance pathways. J Gen Physiol 83: 497–512

    Article  PubMed  CAS  Google Scholar 

  • Sarkadi B, Mack E, Rothstein A (1984b) Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. II. Volume- and time-dependent activation and inactivation of ion transport pathways. J Gen Physiol 83: 513–527

    Article  PubMed  CAS  Google Scholar 

  • Sarkadi B, Cheung R, Mack E, Grinstein S, Gelfand EW, Rothstein A (1985) Cation and anion transport pathways in volume regulatory response of human lymphocytes to hyposmotic media. Am J Physiol 248: C480–C487

    PubMed  CAS  Google Scholar 

  • Schild L, Aronson PS, Giebisch G (1991) Basolateral transport pathways for K+ and Cl in rabbit proximal tubule: effects on cell volume. Am J Physiol 260: F101–F109

    PubMed  CAS  Google Scholar 

  • Schmidt WF III, McManus TJ (1977a) Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypotonic conditions. J Gen Physiol 70: 59–79

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WF III, McManus TJ (1977b) Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport. J Gen Physiol 70: 81–97

    Article  CAS  Google Scholar 

  • Schmidt WF III, McManus TJ (1977c) Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response. J Gen Physiol 70: 99–121

    Article  PubMed  CAS  Google Scholar 

  • Schultz SG (1981) Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”. Am J Physiol 241: F579–F590

    PubMed  CAS  Google Scholar 

  • Schultz SG (1989a) Volume preservation: then and now. News Physiol Sci 4: 169–172

    Google Scholar 

  • Schultz SG (1989b) Intracellular sodium activities and basolateral membrane potassium conductances of sodium absorbing epithelia. Curr Top Membr Transp 34: 21–44

    CAS  Google Scholar 

  • Schultz SG, Hudson RL, Lapointe JY (1985) Electrophysiological studies of sodium cotransport in epithelia: towards a cellular model. In: Semenza G, Kinne R (eds) Membrane transport driven by ion gradients. Ann N Y Acad Sci 456: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Sernka TJ (1990) Direct hyposmotic stimulation of gastric acid secretion. Membr Biochem 9: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Siebens AW, Kregenow FM (1985) Volume-regulatory responses of Amphiuma red cells in anisotonic media. The effect of amiloride. J Gen Physiol 86: 527–564

    Article  PubMed  CAS  Google Scholar 

  • Siebens AW, Spring KR (1989) A novel sorbitol transport mechanism in cultured renal papillary epithelial cells. Am J Physiol 257: F937–F946

    PubMed  CAS  Google Scholar 

  • Simmons NL (1982) Cultured monolayers of MDCK cells: a novel model system for the study of epithelial development and function. Gen Pharmacol 13: 287–291

    Article  PubMed  CAS  Google Scholar 

  • Simmons NL (1984) Epithelial cell volume regulation in hypotonic fluids: studies using a model tissue culture renal epithelial cell system. Q J Exp Physiol 69: 83–95

    PubMed  CAS  Google Scholar 

  • Soltoff SP, McMillian MK, Cantley LC, Cragoe EJ Jr, Cantley LC, Talamo BR (1989) Effects of muscarinic, alpha-adrenergic, and substance P agonists and ionomycin on ion transport mechanisms in the rat parotid acinar cell. The dependence of ion transport on intracellular calcium. J Gen Physiol 93: 285–319

    Article  PubMed  CAS  Google Scholar 

  • Somero GN (1986) Protons, osmolytes, and fitness of internal milieu for protein function. Am J Physiol 251: R197–R213

    PubMed  CAS  Google Scholar 

  • Spring KR (1985) Determinants of epithelial cell volume. Fed Proc 44: 2526–2529

    PubMed  CAS  Google Scholar 

  • Stoddard JS, Reuss L (1989) Electrophysiological effects of mucosal Cl-removal in Necturus gallbladder epithelium. Am J Physiol 257: C568–C578

    PubMed  CAS  Google Scholar 

  • Sun A, Hebert SC (1989) Rapid hypertonic cell volume regulation in the perfused inner medullary collecting duct. Kidney Int 36: 831–842

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi J, Guggino WB (1989) Membrane stretch: a physiological stimulator of Ca2+- activated K+ channels in thick ascending limb. Am J Physiol 257: F347–F352

    PubMed  CAS  Google Scholar 

  • Tas PWL, Massa PT, Kress HG, Koschel K (1987) Characterization of an Na+/K+/Cr co-transport in primary cultures of rat astrocytes. Biochim Biophys Acta 903: 411–416

    Article  PubMed  CAS  Google Scholar 

  • Tauc M, Le Maout S, Poujeol P (1990) Fluorescent video-microscopy study of regulatory volume decrease in primary culture of rabbit proximal convoluted tubule. Biochim Biophys Acta 1052: 278–284

    Article  PubMed  CAS  Google Scholar 

  • Thurston JH, Hauhart RE, Naccarato EF (1981) Taurine: possible role in osmotic regulation of mammalian heart. Science 214: 1373–1374

    Article  PubMed  CAS  Google Scholar 

  • Tivey DR, Simmons NL, Aiton JF (1985) Role of passive potassium fluxes in cell volume regulation in cultured HeLa cells. J Membr Biol 87: 93–105

    Article  PubMed  CAS  Google Scholar 

  • Ubl J, Murer H, Kolb HA (1988a) Hypotonic shock evokes opening of Ca2+ activated K channels in opossum kidney cells. Pflugers Arch Eur J Physiol 412: 551–553

    Article  CAS  Google Scholar 

  • Ubl J, Murer H, Kolb H-A (1988b) Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells. J Membr Biol 104: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ, Jarausch KH (1956) Untersuchungen zum Problem der Harnkonzentrierung und Harnverdunnung. Pflügers Arch Eur J Physiol 262: 537–550

    Article  CAS  Google Scholar 

  • Ussing HH (1965) Relationship between osmotic reactions and active sodium transport in frog skin epithelium. Acta Physiol Scand 63: 141–155

    Article  PubMed  CAS  Google Scholar 

  • Ussing HH (1985) Volume regulation and basolateral cotransport of sodium, potassium, and chloride ions in frog skin epithelium. Pfliigers Arch Eur J Physiol 405: S2–S7

    Article  CAS  Google Scholar 

  • Ussing HH (1986) Epithelial cell volume regulation illustrated by experiments in frog skin. Renal Physiol 9: 38–46

    PubMed  CAS  Google Scholar 

  • Ussing HH (1990) Volume regulation of frog skin epithelium. Comp Physiol 4: 87–113

    Google Scholar 

  • van Rossum GDV, Russo MA (1981) Ouabain-resistant mechanism of volume control and the ultrastructural organization of liver slices recovering from swelling in vitro. J Membr Biol 59: 191–209

    Article  PubMed  Google Scholar 

  • van Rossum GDV, Russo MA (1984) Requirement of Cl” and Na+ for the ouabain-resistant control of cell volume in slices of rat liver. J Membr Biol 77: 63–76

    Article  PubMed  Google Scholar 

  • van Rossum GDV, Russo MA, Schisselbauer JC (1987) Role of cytoplasmic vesicles in volume maintenance. Curr Top Membr Transp 30: 45–74

    Google Scholar 

  • van Rossum GDV, Ernst SA, Russo MA (1981) Relative effects of furosemide and ethacrynic acid on ion transport and energy metabolism in slices of rat kidney-cortex. Naunyn-Schmiedeberg’s Arch Pharmacol 317: 90–96

    Article  Google Scholar 

  • Venosa RA (1991) Hypo-osmotic stimulation of active Na+ transport in frog muscle: apparent upregulation of Na+ pumps. J Membr Biol 120: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Vislie T (1983) Cell volume regulation in fish heart ventricles with special reference to taurine. Comp Biochem Physiol 76A: 507–514

    Article  Google Scholar 

  • Völkl H, Lang F (1988a) Electrophysiology of cell volume regulation in proximal tubules of the mouse kidney. Pfliigers Arch Eur J Physiol 411: 514–519

    Article  Google Scholar 

  • Völkl H, Lang F (1988b) Ionic requirement for regulatory cell volume decrease in renal straight proximal tubules. Pfliigers Arch Eur J Physiol 412: 1–6

    Article  Google Scholar 

  • Völkl H, Geibel J, Greger R, Lang F (1986) Effects of ouabain and temperature on cell membrane potentials in isolated perfused straight proximal tubules of the mouse kidney. Pflügers Arch Eur J Physiol 407: 252–257

    Article  Google Scholar 

  • Völkl H, Paulmichl M, Lang F (1988) Cell volume regulation in renal cortical cells. Renal Physiol 11: 158–173

    Google Scholar 

  • Walz W, Mukerji S (1990) Simulation of aspects of ischemia in cell culture: changes in lactate compartmentation. Glia 3: 522–528

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Messner G, Oberleithner H, Lang F, Deetjen P (1984) The effect of ouabain on intracellular activities of K+, Na+, Cl, H+ and Ca2+ in proximal tubules of frog kidneys. Pflügers Arch Eur J Physiol 401: 6–13

    Article  CAS  Google Scholar 

  • Weiss H, Lang F (1992) Ion channels activated by swelling of Madin Darby canine kidney (MDCK-) cells. J Membr Biol (in press)

    Google Scholar 

  • Welling DJ, Welling LW (1988) Model of renal cell volume regulation without active transport: role of a heteroporous membrane. Am J Physiol 255: F529–F538

    PubMed  CAS  Google Scholar 

  • Welling PA, Linshaw MA, Sullivan LP (1985) Effect of barium on cell volume regulation in rabbit proximal straight tubules. Am J Physiol 249: F20–F27

    PubMed  CAS  Google Scholar 

  • Welling PA, O’Neill RG (1990) Cell swelling activates basolateral membrane Cl and K conductances in rabbit proximal tubule. Am J Physiol 258: F951–F962

    PubMed  CAS  Google Scholar 

  • Wiener H, Turnheim K (1990) Calcium-activated potassium channels in basolateral membranes of colon epithelial cells; reconstitution and functional properties. Wien Klin Wochenschr 26: 622–628

    Google Scholar 

  • Wirthensohn G, Lefrank S, Guder WG, Beck FX (1987a) Studies on the role of glycerophosphorylcholine and sorbitol in renal osmoregulation. In: Kovacevic Z, Guder WG (eds) Molecular nephrology; biochemical aspects of kidney function, de Gruyter, Berlin, pp 323–327

    Google Scholar 

  • Wirthensohn G, Beck F-X, Guder WG (1987b) Role and regulation of glycerophosphorylcholine in rat renal papilla. Pfliigers Arch Eur J Physiol 409: 411–415

    Article  CAS  Google Scholar 

  • Yamauchi A, Kwon HM, Uchida S, Preston AS, Handler JS (1991) Myo-inositol and betaine transporters regulated by tonicity are basolateral in MDCK cells. Am J Physiol 261: F197–F202

    PubMed  CAS  Google Scholar 

  • Yantorno RE, Coca-Prados M, Krupin T, Civan MM (1989) Volume regulation of cultured transformed, non-pigmented epithelial cells from human ciliary body. Exp Eye Res 49: 423–437

    Article  PubMed  CAS  Google Scholar 

  • Yoshitomi K, Fromter E (1984) Cell pH of rat renal proximal tubule in vivo and the conductive nature of peritubular HCO3 -(OH) exit. Pflügers Arch Eur J Physiol 402: 300–305

    Article  CAS  Google Scholar 

  • Yoshitomi K, Fromter E (1985) How big is the electrochemical potential difference of Na+ across rat renal proximal tubular cell membranes in vivo? Pfliigers Arch Eur J Physiol 405: S121–S126

    Article  Google Scholar 

  • Yoshitomi K, Burckhardt B-Ch, Fromter E (1985) Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflügers Arch Eur J Physiol 405: 360–366

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, F., Ritter, M., Völkl, H., Häussinger, D. (1993). Cell Volume Regulatory Mechanisms — An Overview. In: Lang, F., Häussinger, D. (eds) Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77124-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77124-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77126-2

  • Online ISBN: 978-3-642-77124-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics